1  | covmba(x, csteps = 5)
 | 
x | 
|
csteps | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62  | ##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (x, csteps = 5) 
{
    zx <- x
    x <- as.matrix(x)
    p <- dim(x)[2]
    covs <- var(x)
    mns <- apply(x, 2, mean)
    for (i in 1:csteps) {
        md2 <- mahalanobis(x, mns, covs)
        medd2 <- median(md2)
        if (p > 1) {
            mns <- apply(x[md2 <= medd2, ], 2, mean)
            covs <- var(x[md2 <= medd2, ])
        }
        if (p == 1) {
            mns <- mean(x[md2 <= medd2])
            covs <- var(x[md2 <= medd2])
        }
    }
    covb <- covs
    mnb <- mns
    critb <- prod(diag(chol(covb)))
    covv <- diag(p)
    med <- apply(x, 2, median)
    md2 <- mahalanobis(x, center = med, covv)
    medd2 <- median(md2)
    if (p > 1) {
        mns <- apply(x[md2 <= medd2, ], 2, mean)
        covs <- var(x[md2 <= medd2, ])
    }
    if (p == 1) {
        mns <- mean(zx[md2 <= medd2])
        covs <- var(zx[md2 <= medd2])
    }
    for (i in 1:csteps) {
        md2 <- mahalanobis(x, mns, covs)
        medd2 <- median(md2)
        if (p > 1) {
            mns <- apply(x[md2 <= medd2, ], 2, mean)
            covs <- var(x[md2 <= medd2, ])
        }
        if (p == 1) {
            mns <- mean(zx[md2 <= medd2])
            covs <- var(zx[md2 <= medd2])
        }
    }
    crit <- prod(diag(chol(covs)))
    if (crit < critb) {
        critb <- crit
        covb <- covs
        mnb <- mns
    }
    rd2 <- mahalanobis(x, mnb, covb)
    const <- median(rd2)/(qchisq(0.5, p))
    covb <- const * covb
    list(center = mnb, cov = covb)
  }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.