#' Calculates the pooled difference between proportions and standard error
#' according to Wald across multiply imputed datasets.
#'
#' \code{pool_propdiff_wald} Calculates the pooled difference between proportions
#' and standard error according to Wald across multiply imputed datasets.
#'
#' @param object An object of class 'mistats' ('Multiply Imputed
#' Statistical Analysis').
#' @param conf.level Confidence level of the confidence intervals.
#' @param dfcom Complete data degrees of freedom. Default
#' number is taken from function \code{propdiff_wald}
#'
#' @return The proportion, the Confidence intervals,
#' the standard error and statistic.
#'
#' @author Martijn Heymans, 2021
#'
#' @seealso \code{\link{with.milist}}, \code{\link{propdiff_wald}}
#'
#' @examples
#'
#' imp_dat <- df2milist(lbpmilr, impvar="Impnr")
#' ra <- with(imp_dat, expr=propdiff_wald(Chronic ~ Gender))
#' res <- pool_propdiff_wald(ra)
#' res
#'
#' @export
pool_propdiff_wald <- function(object,
conf.level=0.95,
dfcom=NULL)
{
if(all(class(object)!="mistats"))
stop("object must be of class 'mistats'")
if(!is.list(object$statistics))
stop("object must be a list")
ra <-
data.frame(do.call("rbind", object$statistics))
colnames(ra) <-
c("est", "se", "dfcom")
if(is_empty(dfcom)){
dfcom <- ra$dfcom[1]
} else {
dfcom <- dfcom
}
pool_est <-
pool_scalar_RR(est=ra$est, se=ra$se,
logit_trans=FALSE,
conf.level = conf.level, dfcom=dfcom)
low <-
pool_est$pool_est - pool_est$t * pool_est$pool_se
high <-
pool_est$pool_est + pool_est$t * pool_est$pool_se
output <-
round(matrix(c(pool_est$pool_est, pool_est$pool_se,
pool_est$t, low, high), 1, 5), 5)
colnames(output) <-
c("Prop diff Wald", "SE", "t",
c(paste(conf.level*100, "CI low"),
paste(conf.level*100, "CI high")))
class(output) <-
"mipool"
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.