Description Usage Arguments Value Author(s) See Also Examples
Given the tunning parameters return the psiLearning model to estimate the optimal ITR
1  | 
X | 
 n by p input matrix.  | 
A | 
 a vector of n entries coded 1 and -1 for the treatment assignments.  | 
R | 
 a vector of outcome variable, larger is more desirable.  | 
w0 | 
 Inital estimate for the coefficients from    | 
tau | 
 tuning parameter for the loss function in psi-Learn  | 
kappa | 
 tunning parameter to control the complexity of the decision function.  | 
maxit | 
 maximum iterations  | 
tol | 
 tolerance error bound  | 
kernel | 
 kernel function for psi-Learning, can be   | 
sigma | 
 when using the rbf kernel, the bandwidth parameter for 'rbf' kernel, default is 0.5.  | 
res | 
 Whether to estimate the residual as the outcome for interaction effect, default is FALSE  | 
It returns the estimated coefficients in the decision funcion and the fitted value
w | 
 the coefficent for the decision function, if in the linear case it is p-dimension and if in the rbf kernel case, it is n-dimension.  | 
bias | 
 the intercept in both the linear case and the kernel case.  | 
fit | 
 a vector of estimated values for \hat{f(x)} in training data, in the linear case it is fit=bias+X*w and in the kernel case fit=bias+K(X,X)w.  | 
MingyangLiu <liux3941@umn.edu>
1 2 3 4 5 6 7 8 9 10 11  |           n=100;p=5
          X=replicate(p,runif(n, min = -1, max = 1))
          A=2*rbinom(n, 1, 0.5)-1
          T=cbind(rep(1,n,1),X)%*%c(1,2,1,0.5,rep(0,1,p-3))
          T0=(cbind(rep(1,n,1),X)%*%c(0.54,-1.8,-1.8,rep(0,1,p-2)))*A
          R=as.vector(rnorm(n,mean=0,sd=1)+T+T0)
          w0.Linear=psi_Init(X,A,R,kernel='linear')
          psi_Linear<-psiITR(X,A,R,w0.Linear,tau=0.1,kappa=0.5,maxit=100,tol=1e-4,kernel='linear')
          w0.rbf=psi_Init(X,A,R,kernel='rbf')
          sigma=Sig_est(X,A)
          psi_rbf<-psiITR(X,A,R,w0.rbf,tau=0.1,kappa=0.1,maxit=100,tol=1e-4,kernel='rbf',sigma=sigma)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.