#' Commodity position and confidence interval check for a discrete number of randomizations
#'
#' The \code{tie_cicheck} is a wrapper for checking the confidence intervals for data with ties. The function calculates the worth
#' values for a specific number of randomizations and reports the confidence intervals for the commodity means.
#'
#' @param R number of maximum randomization steps
#' @param dat imported raw data (should be binary, if not, will be binarized automatically)
#' @param RF name of the reference fluid variable
#' @param CF name of the combination fluid variable
#' @param id subject IDs
#' @param RV name of the response variable
#' @param seed TRUE/FALSE for constant seeding
#' @param prefLimit preference limit for binarization threshold
#' @param ord item category order
#' @param default default item in worth value estimation (usually the lowest worth value)
#' @param compstudy label of the compiled sub study (used for filtering)
#' @param showplot show the errorplot with confidence intervals
#' @param ciLvl Level of confidence (default: 0.95)
#' @param showstats calculate ANOVA1 and Tukey's test for the commodities
#'
#' @import ggplot2
#' @import ggpubr
#' @import reshape2
#' @importFrom stats aov TukeyHSD
#' @import Rmisc
#'
#' @return Exports random binarize response for distance cutoff selection
#'
#' @export
tie_cicheck <- function(data=tiefightR::mouse, R=NULL, ciLvl=0.95, seed=TRUE, RF=NULL,
CF=NULL,id=NULL, RV=NULL, ord=NULL, prefLimit=50, compstudy=NULL, default=NULL,
showplot=TRUE, showstats=FALSE, ylim=c(0.1,0.35)){
# do the desired randomizations
if(seed==TRUE){
set.seed(123)
}else{}
h <- NULL
h <- replicate(R, tie_rwalk(dat = data,
RF = RF,
CF = CF,
id = id,
RV = RV,
ord = ord,
prefLimit = prefLimit,
setseed = FALSE,
compstudy = compstudy,
default = default))
# collate the worth value arrays
n <- names(h[,,1])
set <- NULL
for(j in 1:dim(h)[3]){
s <- h[,,j]
set <- rbind(set, s[names(s)==n ])
}
# do da melt!
M <- melt(set)
# plot or not
if(showplot==TRUE){
colnames(M) <- c("R","commodity","worth")
Rplot <- ggerrorplot(M, x = "commodity", y = "worth",
desc_stat = "mean_ci", color = "commodity", ci = ciLvl,
palette="uchicago", size=.4) +
ylim(ylim) +
labs(x="",
y = "Worth value",
title = "Bootstrapped worth value on ties",
subtitle = paste("Error bars depicting mean ", "and ", ciLvl,"% ","CIs ", "(R=", R,")",sep="")) +
theme_minimal() +
theme(axis.text.x = element_text(angle=45, vjust=1, hjust=1, size=12))
print(Rplot)
}else{}
# do some sadistics!
if(showstats==TRUE){
fit <- aov(M$worth ~ M$commodity, data=M)
# print(summary)
print(TukeyHSD(fit))
}else{}
return(list(M,p=Rplot))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.