R/704-calcProtSeqSim.R

Defines functions calcTwoProtSeqSim calcParProtSeqSim .calcSeqPairSim

Documented in calcParProtSeqSim calcTwoProtSeqSim

.calcSeqPairSim = function(
    twoid, protlist = protlist, type = type, submat = submat) {
    pwa = resolve_pwa()

    id1 = twoid[1]
    id2 = twoid[2]

    if ( protlist[[id1]] == '' | protlist[[id2]] == '' ) {

        sim = 0L

    } else {

        s1  = try(Biostrings::AAString(protlist[[id1]]), silent = TRUE)
        s2  = try(Biostrings::AAString(protlist[[id2]]), silent = TRUE)
        s12 = try(pwa(s1, s2, type = type, substitutionMatrix = submat, scoreOnly = TRUE), silent = TRUE)
        s11 = try(pwa(s1, s1, type = type, substitutionMatrix = submat, scoreOnly = TRUE), silent = TRUE)
        s22 = try(pwa(s2, s2, type = type, substitutionMatrix = submat, scoreOnly = TRUE), silent = TRUE)

        if ( is.numeric(s12) == FALSE | is.numeric(s11) == FALSE | is.numeric(s22) == FALSE ) {
            sim = 0L
        } else if ( abs(s11) < .Machine$double.eps | abs(s22) < .Machine$double.eps ) {
            sim = 0L
        } else {
            sim = s12/sqrt(s11 * s22)
        }

    }

    return(sim)

}

#' Parallellized Protein Sequence Similarity Calculation based on Sequence Alignment
#'
#' Parallellized Protein Sequence Similarity Calculation based on Sequence Alignment
#'
#' This function implemented the parallellized version for calculating
#' protein sequence similarity based on sequence alignment.
#'
#' @param protlist A length \code{n} list containing \code{n} protein sequences,
#' each component of the list is a character string,
#' storing one protein sequence. Unknown sequences should be represented as
#' \code{''}.
#' @param cores Integer. The number of CPU cores to use for parallel execution,
#'        default is \code{2}. Users could use the \code{detectCores()} function
#'        in the \code{parallel} package to see how many cores they could use.
#' @param type Type of alignment, default is \code{'local'},
#' could be \code{'global'} or \code{'local'},
#' where \code{'global'} represents Needleman-Wunsch global alignment;
#' \code{'local'} represents Smith-Waterman local alignment.
#' @param submat Substitution matrix, default is \code{'BLOSUM62'},
#' could be one of \code{'BLOSUM45'}, \code{'BLOSUM50'}, \code{'BLOSUM62'},
#' \code{'BLOSUM80'}, \code{'BLOSUM100'}, \code{'PAM30'}, \code{'PAM40'},
#' \code{'PAM70'}, \code{'PAM120'}, \code{'PAM250'}.
#'
#' @return A \code{n} x \code{n} similarity matrix.
#'
#' @seealso See \code{calcTwoProtSeqSim} for protein sequence alignment
#' for two protein sequences. See \code{\link{calcParProtGOSim}} for
#' protein similarity calculation based on
#' Gene Ontology (GO) semantic similarity.
#'
#' @export calcParProtSeqSim
#'
#' @examples
#' s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
#' s2 = readFASTA(system.file('protseq/P08218.fasta', package = 'Rcpi'))[[1]]
#' s3 = readFASTA(system.file('protseq/P10323.fasta', package = 'Rcpi'))[[1]]
#' s4 = readFASTA(system.file('protseq/P20160.fasta', package = 'Rcpi'))[[1]]
#' s5 = readFASTA(system.file('protseq/Q9NZP8.fasta', package = 'Rcpi'))[[1]]
#' plist = list(s1, s2, s3, s4, s5)
#' \donttest{
#' psimmat = calcParProtSeqSim(plist, cores = 2, type = 'local',
#'                             submat = 'BLOSUM62')
#' print(psimmat)}

calcParProtSeqSim = function(
    protlist, cores = 2, type = 'local', submat = 'BLOSUM62') {
    invisible(resolve_pwa())

    doParallel::registerDoParallel(cores)

    # generate lower matrix index
    idx = combn(1:length(protlist), 2)

    # then use foreach parallelization
    # input is all pair combination
    seqsimlist = vector('list', ncol(idx))

    seqsimlist <- foreach (i = 1:length(seqsimlist), .errorhandling = 'pass') %dopar% {
        tmp <- .calcSeqPairSim(rev(idx[, i]), protlist = protlist, type = type, submat = submat)
    }

    # convert any error objects into length-1 message
    seqsimlist = as.list(unlist(seqsimlist))
    # convert list to matrix
    seqsimmat = matrix(0, length(protlist), length(protlist))
    for (i in 1:length(seqsimlist)) seqsimmat[idx[2, i], idx[1, i]] = seqsimlist[[i]]
    seqsimmat[upper.tri(seqsimmat)] = t(seqsimmat)[upper.tri(t(seqsimmat))]
    diag(seqsimmat) = 1

    return(seqsimmat)

}

#' Protein Sequence Alignment for Two Protein Sequences
#'
#' Protein Sequence Alignment for Two Protein Sequences
#'
#' This function implements the sequence alignment between two protein sequences.
#'
#' @param seq1 A character string, containing one protein sequence.
#' @param seq2 A character string, containing another protein sequence.
#' @param type Type of alignment, default is \code{'local'},
#' could be \code{'global'} or \code{'local'},
#' where \code{'global'} represents Needleman-Wunsch global alignment;
#' \code{'local'} represents Smith-Waterman local alignment.
#' @param submat Substitution matrix, default is \code{'BLOSUM62'},
#' could be one of \code{'BLOSUM45'}, \code{'BLOSUM50'}, \code{'BLOSUM62'},
#' \code{'BLOSUM80'}, \code{'BLOSUM100'}, \code{'PAM30'}, \code{'PAM40'},
#' \code{'PAM70'}, \code{'PAM120'}, \code{'PAM250'}.
#'
#' @return An Biostrings object containing the scores and other
#' alignment information.
#'
#' @seealso See \code{\link{calcParProtSeqSim}} for paralleled pairwise
#' protein similarity calculation based on sequence alignment.
#' See \code{\link{calcTwoProtGOSim}} for calculating the
#' GO semantic similarity between two groups of GO terms or two Entrez gene IDs.
#'
#' @export calcTwoProtSeqSim
#'
#' @examples
#' s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
#' s2 = readFASTA(system.file('protseq/P10323.fasta', package = 'Rcpi'))[[1]]
#' \donttest{
#' seqalign = calcTwoProtSeqSim(s1, s2)
#' seqalign
#' slot(seqalign, "score")}

calcTwoProtSeqSim = function(
    seq1, seq2, type = 'local', submat = 'BLOSUM62') {
    pwa = resolve_pwa()

    # sequence alignment for two protein sequences
    s1  = try(Biostrings::AAString(seq1), silent = TRUE)
    s2  = try(Biostrings::AAString(seq2), silent = TRUE)
    s12 = try(pwa(s1, s2, type = type, substitutionMatrix = submat), silent = TRUE)

    return(s12)

}
nanxstats/Rcpi documentation built on Sept. 24, 2024, 9:36 a.m.