Description Usage Arguments Details Value Examples
View source: R/SimulationPlots.R
This plots the results of the landcover simulation data created by LandCoverSpread
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | SimulationPlots(
landcover_sim_results,
depvar_sim_results,
infest_val,
suscep_val,
dep_var_modified = TRUE,
dep_var_label = "dep_var",
dep_var_modified_label = "dep_var_modified",
font_size = 15,
line_thickness = 0.8,
line_colors = viridis(3)[1:2],
line_color_labels = c("Dep. var.", "Modified dep. var."),
line_plot_axis_label = "Dep. var.",
flip_colors = FALSE,
decimal_places = 2,
infest_label = "Invasive",
suscep_label = "Susceptible",
positive_vals_only = TRUE,
n_grid = NA
)
|
landcover_sim_results |
list. The results of the |
depvar_sim_results |
list. The results of the |
infest_val |
numerical. The value of the invasive landcover. |
suscep_val |
numerical. Vector of landcover values that are susceptible to the spread. |
dep_var_modified |
logical. If |
font_size |
value. Font size of text in the figure. |
line_thickness |
value. For the line graph, the thickness of the lines. |
line_color_labels |
character vector. If |
flip_colors |
logical. Flips the colors of the raster plots |
decimal_places |
numerical. Number of decimal places to report on the legend of continuous plots. |
positive_vals_only |
logical. When plotting the line graph, should the negative values be removed when aggregating by year? |
n_grid |
numerical. If you want a grid of timelapse figures, specify the number of plots. |
Included in the resulting list is a list of yearly landcover plots, a list of yearly dependent variable plots, and a line graph of yearly changes both the dependent variable and, if specified, the modified dependent variable.
A list of landcover plots and line plots associated with the landcover spread simulation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # load packages
library(LandCover); library(foreach)
# initialize data.frame with coordinates
dat <- expand.grid(x = 1:20, y = 1:20, KEEP.OUT.ATTRS = FALSE)
# create some data: elevation, landcover, and temp/ET dependent on elevation and landcover
dat$elevation <- with(dat, 50 + 2*x + 5*y + rnorm(nrow(dat), sd = 7))
dat$landcover <- ifelse(dat$elevation < median(dat$elevation), 1, 2)
dat$temp <- with(dat, (120-0.7*(0.5*elevation + 0.3*y - 0.5*x + ifelse(landcover == 'lc1', -30, 0) + rnorm(nrow(dat)))))
dat$ET <- with(dat, ( -0.4*(-2*temp + 0.5*y - 1.0*x + ifelse(landcover == 'lc1', +20, 0) + rnorm(nrow(dat)))))
# run the gls model
regression_results <- gls_spatial(data = dat, landcover_varname = 'landcover', landcover_vec = c(1,2),
reg_formula = ET ~ elevation + temp, error_formula = ~ x + y)
# predict values of ET before and after invasion
pred_values <- gls_spatial_predict(data = dat, regression_results = regression_results, landcover_varname = 'landcover', landcover_invasive = 1, landcover_susceptible = 2,
dep_varname = 'ET', x_coords_varname = 'x', y_coords_varname = 'y')
# get landcover raster
lc_raster <- rasterFromXYZ(dat[c('x', 'y', 'landcover')])
# run landcover simulation
landcover_sim <- LandCoverSpread(infest_val = 1, suscep_val = 2, spread_rate = 0.05, birdcell = 0, simlength = 15, simulation_count = 100,
lc_raster = lc_raster, dep_var_raster_initial = pred_values$`Predicted values raster, current landcover`,
dep_var_raster_pred = pred_values$`Predicted values raster, post-invasion`,
dep_var_modifier = 0.80, silent = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.