### MU GIS Summary Report
###
### configuration file, edit as needed
###
#########################
### Raster Data Sources #
#########################
# data sources can be "commented-out" using the "#" character
# be sure that there is no trailing "," after the last item in each list
# raster summaries are displayed in the same order in which they are listed below
raster.list <- list(
continuous=list(
`Mean Annual Air Temperature (degrees C)`='data/crop_final_MAAT_800m.tif',
`Mean Annual Precipitation (mm)`='data/crop_final_MAP_mm_800m.tif',
`Effective Precipitation (mm)`='data/crop_effective_precipitation_800m.tif',
`Frost-Free Days`='data/crop_ffd_50_pct_800m.tif',
`Growing Degree Days (degrees C)`='data/crop_gdd_mean_800m.tif',
`Elevation (m)`='data/crop_DEM_30m_SSR2.tif',
`Slope Gradient (%)`='data/crop_Slope_30m_SSR2.tif',
# `Annual Beam Radiance (MJ/sq.m)`='data/crop_ssro2_ann_beam_rad_int.tif',
# `Compound Topographic Index`='data/crop_ssro2_tci_int.tif',
# `SAGA TWI`='data/crop_ssro2_saga_twi_int.tif',
`NLCD Impervious Surface (%))`='data/crop_nlcd_impervious_2011_cropped.tif'
),
categorical=list(
`Geomorphon Landforms`='data/crop_forms30_region2.tif',
`Curvature Classes`='data/crop_curvature_classes_30_class_region2.tif',
`NLCD (2011)`='data/crop_nlcd_2011_cropped.tif',
`NASS Cropland Data Layer (2017)`='data/crop_Ver2017_30m_cdls_clip.img'
),
circular=list(
`Slope Aspect (degrees)`='data/crop_Aspect_30m_SSR2.tif'
)
)
###################
### Map unit data #
###################
##
## Data must be in a projected coordinate system, with units of meters!
##
##
## Geodatabase with many map units, explicit subsetting
## consider sub-setting to SHP if the geodatabase contains more than 2-3 soil survey areas
##
# geodatabase path
# mu.dsn <- 'E:/gis_data/ca630/FG_CA630_OFFICIAL.gdb'
# name of featureclass
# mu.layer <- 'ca630_a'
# map unit symbols / keys to extract
mu.set <- c('5012','3046','7083',"7085","7088")
##
## Typical SDJR style data: SHP with multiple map units
##
# path to parent folder of SHP, no trailing forward slash (/)
mu.dsn <- 'data'
# SHP name, without file extension
mu.layer <- 'ca630_clip'
############################################
### column with map unit ID / key / symbol #
############################################
# could be 'MUKEY', 'MUSYM', or any valid column name
mu.col <- 'MUSYM'
#########################################################
### polygon sampling density (samples / acre / polygon) #
#########################################################
# consider using a sampling density between 1-2 points / ac.
# increase if there are un-sampled polygons
# delineations smaller than 5 ac. may require up to 5 points / ac.
# values > 6-7 points / ac. will only slow things down
pts.per.acre <- 3
###########################
### quantiles of interest #
###########################
# the most important quantiles (percentiles / 100) are: 0.1, 0.5 (median), and 0.9
# optionally reduce the number of quantiles for narrower tables
p.quantiles <- c(0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 1)
##################################
### scale density plots to {0,1} #
##################################
# typically scaling density curves to the interval of {0,1} is helpful: patterns are more clear
# this can cause problems when comparing map units of drastically different areas
# in that case, it might be useful to disable scaling
scaleDensityCurves <- TRUE
#####################################################################################
### output file names (OPTIONAL; uncomment to override defaults) #
### default will include a file-specific prefix and full list of MUSYMs summarized #
### do not include .shp extension for shapefiles; automatically added by writeOGR() #
#####################################################################################
# shp.unsampled.fname <- 'un-sampled-polygons'# shapefile containing any unsampled polygons (usually too small or odd shape)
# shp.stats.fname <- 'polygons-with-stats' # shapefile containing median values / most likely classes by delineation
# shp.qc.fname <- 'poly-qc' # shapefile containing "proportion of samples outside 5-95% quantile range" by delineation
# csv.stats.fname <- 'poly-stats.csv' # comma-separated value file containing median values / most likely classes by delineation
# csv.qc.fname <- 'poly-qc.csv' # comma-separated value file containing "proportion of samples outside 5-95% quantile range" by delineation
########################################################
### Add estimate of confidence to box and whisker plots ###
########################################################
#enabling this feature will double the run time
#enabling this feature will add "notches" to box and whisker plots
# that are close approximations to a confidence interval around the median
# adjusted for spatial autocorrelation
correct.sample.size <- FALSE
###########################################
### save samples after report has run ? ###
###########################################
# used for tinkering with a report .Rmd and debugging
# this will save samples to a file and subsequent report runs will use the saved samples
# not recommended for routine operation
cache.samples <- FALSE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.