Description Usage Arguments Examples
Infers alpha
(synthesis rate) and beta
(degredation rate) from sequencing read data (stored in the data
slot) using the
basic kinetic model: dx/dt = alpha - beta * x
.
If no read data exists in the provided basicKineticModel then simulated read data
will be generated using simulation data stored in @simData
before parameter inference. If no simulated data exists, it will be generated
before simulating read data and inferring parameters.
1 2 3 | ## S4 method for signature 'basicKineticModel'
inferParameters(object, dispersionModel = NULL,
dispByGene = T)
|
object |
A basicKineticModel object |
dispersionModel |
A disperson model to use for inference. If not specified, the dispersion model stored in |
dispByGene |
Boolean controlling the expected nature of the |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ##setup
bkm=basicKineticModel(times=0:30, synthRate = 1:10,degRate = rep(0.3,10))
bkm=simulateData(bkm) #optional
bkm=simulateReads(bkm,expectedLibSize=10^6,replicates=3,spikeInSizes = 200,dispersionModel=function(x){rep(10^3,length(x))}, dispByGene=F)
##infer params using same dispersion as simulated data
bkm=inferParameters(bkm,byGene=F)
##infer params using per-gene dispersion estimates from read data (dispersion estimates for each gene based on that gene's data alone)
bkm@dispersionModel = estimateDispersions(bkm,byGene=T)
bkm=inferParameters(bkm)
##infer params using mean-based dispersion estimates from read data (dispersion estimates based on entire data set)
bkm@dispersionModel = estimateDispersions(bkm,byGene=F)
bkm=inferParameters(bkm,byGene=F)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.