#' @title
#' Create a new Monty Hall Problem game.
#'
#' @description
#' `create_game()` generates a new game that consists of two doors
#' with goats behind them, and one with a car.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param ... no arguments are used by the function.
#'
#' @return The function returns a length 3 character vector
#' indicating the positions of goats and the car.
#'
#' @examples
#' create_game()
#'
#' @export
create_game <- function()
{
a.game <- sample( x=c("goat","goat","car"), size=3, replace=F )
return( a.game )
}
#' @title
#' Contestant selects door.
#'
#' @description
#' `select_door()` randomly picks one of the three doors.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param ... no arguments are used by the function.
#'
#' @return
#' Returns a numeric value indicating initial door selection.
#'
#' @examples
#' select_door()
#'
#' @export
select_door <- function( )
{
doors <- c(1,2,3)
a.pick <- sample( doors, size=1 )
return( a.pick ) # number between 1 and 3
}
#' @title
#' Host opens a remaining door.
#'
#' @description
#' `open_goat_door()` reveals one of the remaining goat doors.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param
#' The opened door will not be the contestants selection or
#' the remaining door with a car.
#'
#' @return
#' Returns a numeric value indicating opened door selection.
#'
#' @examples
#' open_goat_door()
#'
#' @export
open_goat_door <- function( game, a.pick )
{
doors <- c(1,2,3)
# if contestant selected car,
# randomly select one of two goats
if( game[ a.pick ] == "car" )
{
goat.doors <- doors[ game != "car" ]
opened.door <- sample( goat.doors, size=1 )
}
if( game[ a.pick ] == "goat" )
{
opened.door <- doors[ game != "car" & doors != a.pick ]
}
return( opened.door ) # number between 1 and 3
}
#' @title
#' Contestant has opportunity to change door selection.
#'
#' @description
#' `change_door()` gives the option to stay on first choice
#' or switch to the remaining unopened door.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param
#' If contestant chooses to switch doors, the selected door
#' cannot be the opened door or the original selection.
#'
#' @return
#' Returns a numeric value indicating final door selection.
#'
#' @examples
#' change_door()
#'
#' @export
change_door <- function( stay=T, opened.door, a.pick )
{
doors <- c(1,2,3)
if( stay )
{
final.pick <- a.pick
}
if( ! stay )
{
final.pick <- doors[ doors != opened.door & doors != a.pick ]
}
return( final.pick ) # number between 1 and 3
}
#' @title
#' Reveals contestants final selection.
#'
#' @description
#' `determine_winner()` reveals what is behind the doors and
#' determines if 'Win' or 'Lose'.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param
#' Contestants win or lose depends on correlation of a car or
#' goat, with the selected door number.
#'
#' @return
#' Returns a character value of 'Win' or 'Lose' indicating
#' contestant's outcome.
#'
#' @examples
#' determine_winner()
#'
#' @export
determine_winner <- function( final.pick, game )
{
if( game[ final.pick ] == "car" )
{
return( "WIN" )
}
if( game[ final.pick ] == "goat" )
{
return( "LOSE" )
}
}
#' @title
#' Full game run.
#'
#' @description
#' `play_game()` combines previous functions and runs one
#' full game.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param
#' Arguments used are combination of previous functions.
#'
#' @return
#' Returns a character value of either strategy and the
#' corresponding outcome of those choices.
#'
#' @examples
#' play_game()
#'
#' @export
play_game <- function( )
{
new.game <- create_game()
first.pick <- select_door()
opened.door <- open_goat_door( new.game, first.pick )
final.pick.stay <- change_door( stay=T, opened.door, first.pick )
final.pick.switch <- change_door( stay=F, opened.door, first.pick )
outcome.stay <- determine_winner( final.pick.stay, new.game )
outcome.switch <- determine_winner( final.pick.switch, new.game )
strategy <- c("stay","switch")
outcome <- c(outcome.stay,outcome.switch)
game.results <- data.frame( strategy, outcome,
stringsAsFactors=F )
return( game.results )
}
#' @title
#' Run and display 100 iterations.
#'
#' @description
#' `play_n_games()` combines previous functions and runs
#' multiple iterations of the game and displays proportions.
#'
#' @details
#' The game setup replicates the game on the TV show "Let's
#' Make a Deal" where there are three doors for a contestant
#' to choose from, one of which has a car behind it and two
#' have goats. The contestant selects a door, then the host
#' opens a door to reveal a goat, and then the contestant is
#' given an opportunity to stay with their original selection
#' or switch to the other unopened door. There was a famous
#' debate about whether it was optimal to stay or switch when
#' given the option to switch, so this simulation was created
#' to test both strategies.
#'
#' @param
#' Arguments used are combination of previous functions.
#'
#' @return
#' Returns a table of either strategy and the
#' corresponding outcomes of those choices.
#'
#' @examples
#' play_n_games()
#'
#' @export
play_n_games <- function( n=100 )
{
library( dplyr )
results.list <- list() # collector
loop.count <- 1
for( i in 1:n ) # iterator
{
game.outcome <- play_game()
results.list[[ loop.count ]] <- game.outcome
loop.count <- loop.count + 1
}
results.df <- dplyr::bind_rows( results.list )
table( results.df ) %>%
prop.table( margin=1 ) %>% # row proportions
round( 2 ) %>%
print()
return( results.df )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.