extract-methods: Methods to extract information from objects of class...

Description Usage Arguments Value Methods Author(s) Examples

Description

The extract-methods extract and/or compute specified statistics from object of class "MPMData", "ESTATICSModel", "sESTATICSModel" and "qMaps". The [-methods can be used to reduce objects of class "MPMData", "ESTATICSModel", "sESTATICSModel" and "qMaps" such that they .

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## S3 method for class 'MPMData'
extract(x, what, ...)
## S3 method for class 'ESTATICSModel'
extract(x, what, ...)
## S3 method for class 'sESTATICSModel'
extract(x, what, ...)
## S3 method for class 'qMaps'
extract(x, what, ...)
## S3 method for class 'MPMData'
x[i, j, k, ...]
## S3 method for class 'ESTATICSModel'
x[i, j, k, ...]
## S3 method for class 'sESTATICSModel'
x[i, j, k, ...]
## S3 method for class 'qMaps'
x[i, j, k, ...]

Arguments

x

object of class "MPMData", "ESTATICSModel", "sESTATICSModel" or "qMaps".

what

Character vector of of names of statistics to extract. See Methods Section for details.

i

index vector for first spatial dimension

j

index vector for second spatial dimension

k

index vector for third spatial dimension

...

additional parameters, currently unused.

Value

A list with components carrying the names of the options specified in argument what.

Methods

class(x) = "ANY"

Returns a warning for extract

class(x) = "MPMData"

Depending the occurence of names in what a list with the specified components is returned

  • "ddata"mpm data

  • "sdim" dimension of image cube

  • "nFiles" number of images / image files

  • "t1Files" character - filenames of t1Files

  • "pdFiles" character - filenames of pdFiles

  • "mtFiles" character - filenames of mtFiles

  • "model" Number of the ESTATICS model that can be used

  • "maskFile" character - filenames of maskFile

  • "mask" mask

  • "TR" vector of TR values

  • "TE" vector of TE values

  • "FA" vector of FA values

class(x) = "ESTATICSModel"

Depending the occurence of names in what a list with the specified components is returned

  • "modelCoeff"Estimated parameter maps

  • "invCov" map of inverse covariance matrices

  • "rsigma"map of residual standard deviations

  • "isConv" convergence indicator map

  • "isThresh" logical map indicating where R2star==maxR2star.

  • "sdim" image dimension

  • "nFiles" number of images

  • "t1Files" vector of T1 filenames

  • "pdFiles" vector of PD filenames

  • "mtFiles" vector of MT filenames

  • "model" model used (depends on specification of MT files)

  • "maskFile" filename of brain mask

  • "mask" brain mask

  • "sigma" sigma

  • "L" L

  • "TR" TR values

  • "TE" TE values

  • "FA" Flip angles (FA)

  • "TEScale" TEScale

  • "dataScale" dataScale

class(x) = "sESTATICSModel"

Depending the occurence of names in what a list with the specified components is returned

  • "modelCoeff"Estimated parameter maps

  • "invCov" map of inverse covariance matrices

  • "rsigma" map of residual standard deviations

  • "isConv" convergence indicator map

  • "bi" Sum of weights map from AWS/PAWS

  • "smoothPar" smooting parameters used in AWS/PAWS

  • "smoothedData" smoothed mpmData

  • "isThresh" logical map indicating where R2star==maxR2star.

  • "sdim" image dimension

  • "nFiles" number of images

  • "t1Files" vector of T1 filenames

  • "pdFiles" vector of PD filenames

  • "mtFiles" vector of MT filenames

  • "model" model used (depends on specification of MT files)

  • "maskFile" filename of brain mask

  • "mask" brain mask

  • "sigma" sigma

  • "L" L

  • "TR" TR values

  • "TE" TE values

  • "FA" Flip angles (FA)

  • "TEScale" TEScale

  • "dataScale" dataScale

class(x) = "qMaps"

Depending the occurence of names in what a list with the specified components is returned

  • b1Map b1Map

  • R1 Estimated map of R1

  • R2star Estimated map of R2star

  • PD Estimated map of PD

  • MT Estimated map of delta (if MT-series was used)

  • model Type of ESTATICS model used

  • t1Files filenames T1

  • mtFiles filenames MT

  • pdFiles filenames PD

  • mask brainmask

Author(s)

Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
dataDir <- system.file("extdata",package="qMRI")
#
#  set file names for T1w, MTw and PDw images
#
t1Names <- paste0("t1w_",1:8,".nii.gz")
mtNames <- paste0("mtw_",1:6,".nii.gz")
pdNames <- paste0("pdw_",1:8,".nii.gz")
t1Files <- file.path(dataDir, t1Names)
mtFiles <- file.path(dataDir, mtNames)
pdFiles <- file.path(dataDir, pdNames)
#
#  file names of mask and B1 field map
#
B1File <- file.path(dataDir, "B1map.nii.gz")
maskFile <- file.path(dataDir, "mask0.nii.gz")
#
#  Acquisition parameters (TE, TR, Flip Angle) for T1w, MTw and PDw images
#
TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4,
        2.3, 4.6, 6.9, 9.2, 11.5, 13.8,
        2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4)
TR <- rep(25, 22)
FA <- c(rep(21, 8), rep(6, 6), rep(6, 8))
#
#   read MPM example data
#
library(qMRI)
mpm <- readMPMData(t1Files, pdFiles, mtFiles,
                   maskFile, TR = TR, TE = TE,
                   FA = FA, verbose = FALSE)
#
#  display some data
#
data <- extract(mpm,"ddata")
if(require(adimpro)){
rimage.options(ylab = "z")
oldpar <- par(mfrow=c(1,3),mar=c(3,3,3,1),mgp=c(2,1,0))
rimage(data[1,,11,], main="first T1w image")
rimage(data[9,,11,], main="first MTw image")
rimage(data[15,,11,], main="first PDw image")
}
#
#  Estimate Parameters in the ESTATICS model
#
modelMPM <- estimateESTATICS(mpm, method = "NLR")
#
#  Parameter maps and residual standard deviation
#
z <- extract(modelMPM,c("rsigma","modelCoeff"))
if(require(adimpro)){
rimage.options(ylab = "z")
par(mfrow=c(1,5),mar=c(3,3,3,1),mgp=c(2,1,0))
rimage(z$modelCoeff[1,,11,], main="S_T1")
rimage(z$modelCoeff[2,,11,], main="S_MT")
rimage(z$modelCoeff[3,,11,], main="S_PD")
rimage(z$modelCoeff[4,,11,], main="R2star")
rimage(z$rsigma[,11,], main="Residual sd")
}
#
#  Compute quantitative maps (R1, R2star, PD, MT)
#
qMRIMaps <- calculateQI(modelMPM,
                        b1File = B1File,
                        TR2 = 3.4)
#
#  resulting quantitative maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
nmaps <- c("R1","R2star","PD","MT")
qmap <- extract(qMRIMaps,nmaps)
for (i in 1:4) rimage(qmap[[i]][,11,],main=nmaps[i])
}
par(oldpar)

neuroconductor-devel-releases/qMRI documentation built on May 6, 2020, 12:42 a.m.