Description Usage Arguments Value Author(s) References See Also Examples
Performs adaptive smoothing of parameter maps in the ESTATICS model and if
mpmData
is specified these data. Implements both vectorized variants of the
Adaptive Weights Smoothing (AWS, Polzehl and Spokoiny (2006))
and patchwise AWS (PAWS, Polzehl et al (2018)) algorithms with weighting schemes determined by
the estimated parameter maps and their covariances.
1 2 | smoothESTATICS(mpmESTATICSModel, mpmData = NULL, kstar = 16, alpha = 0.025,
patchsize = 0, wghts = NULL, verbose = TRUE)
|
mpmESTATICSModel |
Object of class 'ESTATICSModel' as returned from function |
mpmData |
(optional) Object of class MPMData as created by |
kstar |
Maximum number of steps. |
alpha |
specifies the scale parameter for the adaptation criterion. smaller values are more restrictive. |
patchsize |
Patchsize in PAWS, 0 corresponds to AWS, alternative values are 1 and 2. |
wghts |
(optional) voxel size if measurments are not isotropic. |
verbose |
logical - provide information on progress |
list with components
modelCoeff |
Estimated parameter maps |
invCov |
map of inverse covariance matrices |
isConv |
convergence indicator map |
bi |
Sum of weights map from AWS/PAWS |
smoothPar |
smooting parameters used in AWS/PAWS |
smoothedData |
smoothed mpmData |
sdim |
image dimension |
nFiles |
number of images |
t1Files |
vector of T1 filenames |
pdFiles |
vector of PD filenames |
mtFiles |
vector of MT filenames |
model |
model used (depends on specification of MT files) |
maskFile |
filename of brain mask |
mask |
brain mask |
sigma |
sigma |
L |
L |
TR |
TR values |
TE |
TE values |
FA |
Flip angles (FA) |
TEScale |
TEScale |
dataScale |
dataScale |
and class-attribute 'sESTATICSModel'
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de
J. Polzehl, V. Spokoiny, Propagation-separation approach for local likelihood estimation, Probab. Theory Related Fields 135 (3), (2006) , pp. 335–362.
J. Polzehl, K. Papafitsorus, K. Tabelow (2018). Patch-wise adaptive weights smoothing. WIAS-Preprint 2520.
J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | dataDir <- system.file("extdata",package="qMRI")
#
# set file names for T1w, MTw and PDw images
#
t1Names <- paste0("t1w_",1:8,".nii.gz")
mtNames <- paste0("mtw_",1:6,".nii.gz")
pdNames <- paste0("pdw_",1:8,".nii.gz")
t1Files <- file.path(dataDir, t1Names)
mtFiles <- file.path(dataDir, mtNames)
pdFiles <- file.path(dataDir, pdNames)
#
# file names of mask and B1 field map
#
B1File <- file.path(dataDir, "B1map.nii.gz")
maskFile <- file.path(dataDir, "mask.nii.gz")
#
# Acquisition parameters (TE, TR, Flip Angle) for T1w, MTw and PDw images
#
TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4)
TR <- rep(25, 22)
FA <- c(rep(21, 8), rep(6, 6), rep(6, 8))
#
# read MPM example data
#
library(qMRI)
mpm <- readMPMData(t1Files, pdFiles, mtFiles,
maskFile, TR = TR, TE = TE,
FA = FA, verbose = FALSE)
#
# Estimate Parameters in the ESTATICS model
#
modelMPM <- estimateESTATICS(mpm, method = "NLR")
#
# smooth maps of ESTATICS Parameters
#
setCores(2)
modelMPMsp1 <- smoothESTATICS(modelMPM,
kstar = 16,
alpha = 0.004,
patchsize=1,
verbose = TRUE)
#
# resulting ESTATICS parameter maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
oldpar <- par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
pnames <- c("T1","MT","PD","R2star")
modelCoeff <- extract(modelMPM,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(pnames[i])
}
modelCoeff <- extract(modelMPMsp1,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(paste("smoothed",pnames[i]))
}
}
par(oldpar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.