R/normalizeHM.R

Defines functions .hm normalizeHM

Documented in normalizeHM

# Original code version: Taki Shinohara - September 10, 2012
# Current code version: Jean-Philippe Fortin - July 29 2015

# Assuming images are registered and normalized beforehand


#' Histogram matching intensity normalization.
#' 
#' Histogram mathing intensity normalization.
#' 
#' 
#' @param input.files Vector of filenames for the input images. Must be NIfTI
#' files.
#' @param output.files Optional vector of filenames for the output images. By
#' default, will be the \code{input.files} with suffix "WS".
#' @param brain.mask Filename for the brain binary mask specifying the template
#' space brain. Must be a NIfTI file.
#' @param type What modality is used? Should be one of T1, T2, FLAIR or PD.
#' @param writeToDisk Should the normalized scans be saved to the disk?
#' @param returnMatrix Should the matrix of normalized intensities be returned?
#' @param verbose Should messages be printed?
#' @return if \code{returnMatrix} is \code{FALSE}, no value returned, but
#' Histogram-matching-normalized images are saved. If \code{returnMatrix} is
#' \code{TRUE}, Histogram-matching-normalized images are saved and a matrix of
#' normalized intensities is returned.
#' @author Jean-Philippe Fortin
#' @importFrom stats quantile
#' @importFrom pbapply pblapply
#' @importFrom neurobase check_nifti checkimg
#' @export
normalizeHM <-
  function(input.files,
           output.files = NULL,
           brain.mask = NULL,
           type = c("T1", "T2", "FLAIR", "PD"),
           writeToDisk = FALSE,
           returnMatrix = TRUE,
           verbose = TRUE) {
    type <- match.arg(type)
    # RAVEL correction procedure:
    if (!verbose) {
      pboptions(type = "none")
    }
    
    if (!is.null(brain.mask)) {
      brain.mask = neurobase::check_nifti(brain.mask, 
                                          reorient = FALSE, 
                                          allow.array = FALSE)
      brain.indices <- brain.mask == 1
    } else {
      stop("brain.mask must be provided.")
    }
    
    if (verbose) {
      message("[normalizeHM] Histogram matching is applied to each scan. \n")
    }
    # Matrix of voxel intensities:
    V <- pblapply(input.files, function(x) {
      brain = check_nifti(x, reorient = FALSE, 
                                     allow.array = FALSE)      
      brain  <- .hm(brain, type = type)
      brain  <- as.vector(brain[brain.indices])
      brain
    })
    
    input.files = checkimg(input.files)
    if (is.null(output.files)) {
      output.files <- gsub(".nii.gz|.nii", "_HM.nii.gz", input.files)
    }
    

    V <- do.call(cbind, V)
    
    if (writeToDisk) {
      if (verbose) {
        message("[normalizeHM] Writing out the corrected images \n")
      }
      pblapply(1:ncol(V), function(i) {
        .write_brain(
          brain.norm = V[, i],
          output.file = output.files[i],
          brain.mask = brain.mask
        )
      })
    }
    if (returnMatrix) {
      return(V)
    }
  }



# Per subject histogram matching function:
# Assuming img is a nifti object:
.hm <- function(img, type = c("T1", "T2", "FLAIR", "PD")) {
  type <- match.arg(type)
  #seed <- 123413
  #set.seed(seed)
  i.min   <- 0.01 # Trimming Quantiles
  i.max   <- 0.99
  i.s.min <- 0 # Output Range
  i.s.max <- 1
  h <- seq(0.1, 0.9, by = 0.1) # Quantile Landmarks
  
  # This function does training histogram normalization as
  # in Shah et al. (2011) and Nyul et al. (2000)
  #get.landmarks <- function(rawdata, i.min, i.max, i.s.min, i.s.max, h, mask) {
  #	scaled.data <- (rawdata-quantile(rawdata[mask>0],i.min)+i.s.min)/quantile(rawdata[mask>0],i.max)*i.s.max
  #	return(quantile(scaled.data[mask>0], probs=h))
  #}
  
  #This function does histogram normalization transformation as in Shah et al. (2011) and Nyul et al. (2000)
  do.hist.norm <-
    function(rawdata,
             i.min,
             i.max,
             i.s.min,
             i.s.max,
             h,
             m,
             mask) {
      m.obs <- quantile(rawdata[mask > 0], probs = c(i.min, h, i.max))
      m.withends <- c(i.s.min, m, i.s.max)
      transformed.data <- rawdata
      
      transformed.data[transformed.data <= 
                         quantile(rawdata[mask > 0], 
                                  probs = i.min)] <- i.s.min
      transformed.data[transformed.data >= 
                         quantile(rawdata[mask > 0], 
                                  probs = i.max)] <- i.s.max
      
      for (hist.section.i in 1:(length(h) + 1)) {
        which.data <-
          (rawdata[mask > 0] < m.obs[hist.section.i + 1]) &
          (rawdata[mask > 0] >= m.obs[hist.section.i])
        transformed.data[mask > 0][which.data] <-
          (rawdata[mask > 0][which.data] - m.obs[hist.section.i]) / 
          (m.obs[hist.section.i + 1] - m.obs[hist.section.i]) * 
          (m.withends[hist.section.i + 1] - m.withends[hist.section.i]) +
          m.withends[hist.section.i]
      }
      return(transformed.data)
    }
  
  
  if (type == "T1") {
    land.m 	 <- apply(RAVEL::landmarks$t1, 2, mean)
  } else if (type == "T2") {
    land.m 	 <- apply(RAVEL::landmarks$t2, 2, mean)
  } else if (type == "FLAIR") {
    land.m 	 <- apply(RAVEL::landmarks$flair, 2, mean)
  } else if (type == "PD") {
    land.m 	 <- apply(RAVEL::landmarks$pd, 2, mean)
  }
  img.fg  <- 1 * (img > mean(img))
  img <- do.hist.norm(img, i.min, i.max, i.s.min, 
                      i.s.max, h, land.m, img.fg)
  return(img)
}
neuroconductor-releases/RAVEL documentation built on Jan. 1, 2021, 11:37 a.m.