#' Calculate measures of latent VAR community stability
#'
#' Compute reactivity, return rates and contributions of interactions to
#' stationary forecast variance from
#' \pkg{mvgam} models with Vector Autoregressive dynamics
#'
#'@name stability.mvgam
#'@param object \code{list} object of class \code{mvgam} resulting from a call to [mvgam()]
#'that used a Vector Autoregressive latent process model (either as `VAR(cor = FALSE)` or
#'`VAR(cor = TRUE)`)
#'@param ... ignored
#'@details These measures of stability can be used to assess how important inter-series
#'dependencies are to the variability of a multivariate system and to ask how systems
#'are expected to respond to environmental perturbations. Using the formula for a latent VAR(1) as:
#'\deqn{
#'\mu_t \sim \text{MVNormal}(A(\mu_{t - 1}), \Sigma) \quad
#'}
#'this function will calculate the long-term stationary forecast distribution of the system, which
#'has mean \eqn{\mu_{\infty}} and variance \eqn{\Sigma_{\infty}}, to then calculate the following quantities:
#'\itemize{
#' \item `prop_int`: Proportion of the volume of the stationary forecast distribution
#' that is attributable to lagged interactions (i.e. how important are the autoregressive
#' interaction coefficients in \eqn{A} for explaining the shape of the stationary forecast distribution?):
#' \deqn{
#' det(A)^2 \quad
#' }
#' \item `prop_int_adj`: Same as `prop_int` but scaled by the number of series \eqn{p} to facilitate
#' direct comparisons among systems with different numbers of interacting variables:
#' \deqn{
#' det(A)^{2/p} \quad
#' }
#' \item `prop_int_offdiag`: Sensitivity of `prop_int` to inter-series
#' interactions (i.e. how important are the off-diagonals of the autoregressive coefficient
#' matrix \eqn{A} for shaping `prop_int`?), calculated as the relative magnitude of the *off-diagonals* in
#' the partial derivative matrix:
#' \deqn{
#' [2~det(A) (A^{-1})^T] \quad
#' }
#' \item `prop_int_diag`: Sensitivity of `prop_int` to intra-series
#' interactions (i.e. how important are the diagonals of the autoregressive coefficient matrix \eqn{A}
#' for shaping `prop_int`?), calculated as the relative magnitude of the *diagonals* in the partial derivative
#' matrix:
#' \deqn{
#' [2~det(A) (A^{-1})^T] \quad
#' }
#' \item `prop_cov_offdiag`: Sensitivity of \eqn{\Sigma_{\infty}} to inter-series error correlations
#' (i.e. how important are off-diagonal covariances in \eqn{\Sigma} for shaping
#' \eqn{\Sigma_{\infty}}?), calculated as the relative magnitude of the *off-diagonals* in
#' the partial derivative matrix:
#' \deqn{
#' [2~det(\Sigma_{\infty}) (\Sigma_{\infty}^{-1})^T] \quad
#' }
#' \item `prop_cov_diag`: Sensitivity of \eqn{\Sigma_{\infty}} to error variances
#' (i.e. how important are diagonal variances in \eqn{\Sigma} for shaping
#' \eqn{\Sigma_{\infty}}?), calculated as the relative magnitude of the *diagonals* in
#' the partial derivative matrix:
#' \deqn{
#' [2~det(\Sigma_{\infty}) (\Sigma_{\infty}^{-1})^T] \quad
#' }
#' \item `reactivity`: A measure of the degree to which the system moves
#' away from a stable equilibrium following a perturbation.
#' Values `> 0` suggest the system is reactive, whereby a
#' perturbation of the system in one period can be amplified in the next period. If
#' \eqn{\sigma_{max}(A)} is the largest singular value of \eqn{A}, then reactivity is defined as:
#' \deqn{
#' log\sigma_{max}(A) \quad
#' }
#' \item `mean_return_rate`: Asymptotic (long-term) return rate of the mean of the transition distribution
#' to the stationary mean, calculated using the largest eigenvalue of the matrix \eqn{A}:
#' \deqn{
#' max(\lambda_{A}) \quad
#' }
#' Lower values suggest greater stability
#' \item `var_return_rate`: Asymptotic (long-term) return rate of the variance of the transition distribution
#' to the stationary variance:
#' \deqn{
#' max(\lambda_{A \otimes{A}}) \quad
#' }
#' Again, lower values suggest greater stability
#' }
#' Major advantages of using \pkg{mvgam} to compute these metrics are that well-calibrated uncertainties are
#' available and that VAR processes are forced to be stationary. These properties make it simple and
#' insightful to calculate and inspect aspects of both long-term and short-term stability.
#' But it is also possible to more directly inspect possible interactions among the
#' time series in a latent VAR process. To do so, you can calculate
#' Generalized or Orthogonalized Impulse Response Functions using the \code{\link{irf}} function,
#' or you can calculate Forecast Error Variance Decompositions using the \code{\link{fevd}} function.
#'@return A \code{data.frame} containing posterior draws for each stability metric.
#'@references AR Ives, B Dennis, KL Cottingham & SR Carpenter (2003).
#'Estimating community stability and ecological interactions from time-series data.
#'Ecological Monographs. 73, 301-330.
#'@author Nicholas J Clark
#'@seealso \code{\link{VAR}}, \code{\link{irf}}, \code{\link{fevd}}
#' @examples
#' \donttest{
#' # Simulate some time series that follow a latent VAR(1) process
#' simdat <- sim_mvgam(family = gaussian(),
#' n_series = 4,
#' trend_model = VAR(cor = TRUE),
#' prop_trend = 1)
#' plot_mvgam_series(data = simdat$data_train, series = 'all')
#'
#' # Fit a model that uses a latent VAR(1)
#' mod <- mvgam(y ~ -1,
#' trend_formula = ~ 1,
#' trend_model = VAR(cor = TRUE),
#' family = gaussian(),
#' data = simdat$data_train,
#' chains = 2,
#' silent = 2)
#'
#' # Calulate stability metrics for this system
#' metrics <- stability(mod)
#'
#' # Proportion of stationary forecast distribution
#' # attributable to lagged interactions
#' hist(metrics$prop_int,
#' xlim = c(0, 1),
#' xlab = 'Prop_int',
#' main = '',
#' col = '#B97C7C',
#' border = 'white')
#'
#' # Within this contribution of interactions, how important
#' # are inter-series interactions (offdiagonals of the A matrix) vs
#' # intra-series density dependence (diagonals of the A matrix)?
#' layout(matrix(1:2, nrow = 2))
#' hist(metrics$prop_int_offdiag,
#' xlim = c(0, 1),
#' xlab = '',
#' main = 'Inter-series interactions',
#' col = '#B97C7C',
#' border = 'white')
#'
#' hist(metrics$prop_int_diag,
#' xlim = c(0, 1),
#' xlab = 'Contribution to interaction effect',
#' main = 'Intra-series interactions (density dependence)',
#' col = 'darkblue',
#' border = 'white')
#' layout(1)
#'
#' # How important are inter-series error covariances
#' # (offdiagonals of the Sigma matrix) vs
#' # intra-series variances (diagonals of the Sigma matrix) for explaining
#' # the variance of the stationary forecast distribution?
#' layout(matrix(1:2, nrow = 2))
#' hist(metrics$prop_cov_offdiag,
#' xlim = c(0, 1),
#' xlab = '',
#' main = 'Inter-series covariances',
#' col = '#B97C7C',
#' border = 'white')
#'
#' hist(metrics$prop_cov_diag,
#' xlim = c(0, 1),
#' xlab = 'Contribution to forecast variance',
#' main = 'Intra-series variances',
#' col = 'darkblue',
#' border = 'white')
#' layout(1)
#'
#' # Reactivity, i.e. degree to which the system moves
#' # away from a stable equilibrium following a perturbation
#' # (values > 1 suggest a more reactive, less stable system)
#' hist(metrics$reactivity,
#' main = '',
#' xlab = 'Reactivity',
#' col = '#B97C7C',
#' border = 'white',
#' xlim = c(-1*max(abs(metrics$reactivity)),
#' max(abs(metrics$reactivity))))
#' abline(v = 0, lwd = 2.5)
#' }
#'@export
stability <- function(object, ...) {
UseMethod("stability", object)
}
#'@rdname stability.mvgam
#'@method stability mvgam
#'@export
stability.mvgam = function(object, ...) {
# Check trend_model
trend_model <- attr(object$model_data, 'trend_model')
if (!trend_model %in% c('VAR', 'VARcor', 'VAR1', 'VAR1cor')) {
stop(
'Only VAR(1) models currently supported for calculating stability metrics',
call. = FALSE
)
}
# Take posterior draws of the interaction matrix
B_post <- mcmc_chains(object$model_output, 'A')
# Take posterior draws of Sigma
Sigma_post <- mcmc_chains(object$model_output, 'Sigma')
# Number of series in the VAR process
n_series <- object$n_lv
if (is.null(n_series)) {
n_series <- nlevels(object$obs_data$series)
}
metrics <- do.call(
rbind,
lapply(seq_len(NROW(B_post)), function(i) {
B <- matrix(B_post[i, ], nrow = n_series, ncol = n_series, byrow = TRUE)
p <- dim(B)[1]
# If we want to get the variance of the stationary distribution (Sigma_inf)
Sigma <- matrix(
Sigma_post[i, ],
nrow = n_series,
ncol = n_series,
byrow = TRUE
)
vecS_inf <- solve(diag(p * p) - kronecker(B, B)) %*% as.vector(Sigma)
Sigma_inf <- matrix(vecS_inf, nrow = p)
# The difference in volume between Sigma_inf and Sigma is:
# det(Sigma_inf - Sigma) = det(Sigma_inf) * det(B) ^ 2
# according to Ives et al 2003 (eqn 24)
# We can take partial derivatives to determine which elements of
# Sigma_inf contribute most to rates of change in the
# proportion of Sigma_inf that is due to process error
# Thanks to Mark Scheuerell for providing inspirational code
# https://github.com/mdscheuerell/safs-quant-sem-2022/blob/main/lwa_analysis.R
int_env <- det(Sigma_inf) * t(solve(Sigma_inf))
# Proportion of inter-series covariance to
# to overall environmental variation contribution (i.e. how important are
# correlated errors for controlling the shape of the stationary forecast
# distribution?)
dat <- data.frame(
prop_cov_offdiag = mean(abs(int_env[lower.tri(int_env)])) /
(mean(abs(diag(int_env))) + mean(abs(int_env[lower.tri(int_env)])))
)
# Proportion of error variances to stationary forecast distribution
dat$prop_cov_diag <- 1 - dat$prop_cov_offdiag
# Proportion of volume of Sigma_inf attributable to series interactions,
# measuring the degree to which interactions increase
# the variance of the stationary distribution (Sigma_inf) relative
# to the variance of the process error (Sigma)
# lower values = more stability
dat$prop_int = abs(det(B))^2
# Ives et al 2003 suggest to scale this by the number of series for more direct
# comparisons among different studies
dat$prop_int_adj <- abs(det(B))^(2 / p)
# Sensitivity of the species interaction proportion to particular
# interactions is also calculated using partial derivatives
# (note the use of 2 here because we squared det(B) in the above eqn)
int_sens <- 2 * det(B) * t(solve(B))
# Proportion of interspecific contributions to
# to overall interaction contribution
dat$prop_int_offdiag <- mean(abs(int_sens[lower.tri(int_sens)])) /
(mean(abs(diag(int_sens))) + mean(abs(int_sens[lower.tri(int_sens)])))
# Proportion of density dependent contributions to
# to overall interaction contribution
dat$prop_int_diag <- 1 - dat$prop_int_offdiag
# Reactivity, measuring the degree to which the system moves
# away from a stable equilibrium following a perturbation
# values > 0 suggest the system is reactive, whereby a
# perturbation of the system in one period can be amplified in the next period
# Following Neubert et al 2009 Ecology (Detecting reactivity)
dat$reactivity <- log(max(svd(B)$d))
# Return rate of transition distribution to the stationary distribution
# Asymptotic return rate of the mean
# lower values = more stability
dat$mean_return_rate <- max(abs(eigen(B)$values))
# Asymptotic return rate of the variance
# lower values = more stability
dat$var_return_rate <- max(abs(eigen(B %x% B)$values))
dat
})
)
return(metrics)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.