tests/testthat/test-dynamic.R

context("dynamic")

skip_on_cran()

test_that("dynamic to gp spline is working properly", {
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate, rho = 1, stationary = FALSE),
        N = 100,
        family = gaussian()
      )),
      'term.labels'
    ),
    's(time, by = covariate, bs = "gp", m = c(2, 1, 2), k = 50)',
    fixed = TRUE
  )

  # k will decrease as rho increases
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate, rho = 11),
        N = 100,
        family = gaussian()
      )),
      'term.labels'
    ),
    's(time, by = covariate, bs = "gp", m = c(-2, 11, 2), k = 11)',
    fixed = TRUE
  )

  # k will be fixed at N if N <= 8
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate, rho = 5),
        N = 7,
        family = gaussian()
      )),
      'term.labels'
    ),
    's(time, by = covariate, bs = "gp", m = c(-2, 5, 2), k = 7)',
    fixed = TRUE
  )
})

test_that("dynamic to gp Hilbert is working properly", {
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate),
        N = 100,
        family = gaussian()
      )),
      'term.labels'
    ),
    'gp(time, by = covariate, c = 5/4, k = 40, scale = TRUE)',
    fixed = TRUE
  )

  # k should come across just fine
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate, k = 17),
        N = 100,
        family = gaussian()
      )),
      'term.labels'
    ),
    'gp(time, by = covariate, c = 5/4, k = 17, scale = TRUE)',
    fixed = TRUE
  )

  # k will be fixed at N-1 if N <= 8
  expect_match(
    attr(
      terms(mvgam:::interpret_mvgam(
        formula = y ~ dynamic(covariate),
        N = 7,
        family = gaussian()
      )),
      'term.labels'
    ),
    'gp(time, by = covariate, c = 5/4, k = 6, scale = TRUE)',
    fixed = TRUE
  )
})

test_that("rho argument must be positive numeric", {
  data = data.frame(
    out = rnorm(100),
    temp = rnorm(100),
    time = 1:100,
    series = as.factor('series1')
  )
  expect_error(
    mod <- mvgam(
      formula = out ~ dynamic(temp, rho = -1),
      data = data,
      family = gaussian(),
      run_model = FALSE
    ),
    'Argument "rho" in dynamic() must be a positive value',
    fixed = TRUE
  )
})

test_that("rho argument cannot be larger than N - 1", {
  data = data.frame(
    out = rnorm(100),
    temp = rnorm(100),
    time = 1:100,
    series = as.factor('series1')
  )
  expect_error(
    mod <- mvgam(
      formula = out ~ dynamic(temp, rho = 110),
      data = data,
      family = gaussian(),
      run_model = FALSE
    ),
    'Argument "rho" in dynamic() cannot be larger than (max(time) - 1)',
    fixed = TRUE
  )

  expect_error(
    mvgam:::interpret_mvgam(
      formula = y ~ dynamic(covariate, rho = 120),
      N = 100,
      family = gaussian()
    ),
    'Argument "rho" in dynamic() cannot be larger than (max(time) - 1)',
    fixed = TRUE
  )
})

test_that("dynamic to spline works for trend_formulas", {
  beta_data$data_train$random <- rnorm(NROW(beta_data$data_train))
  mod <- mvgam(
    y ~ dynamic(random, rho = 5),
    trend_formula = ~ dynamic(random, rho = 15),
    trend_model = RW(),
    data = beta_data$data_train,
    family = betar(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))

  # trend_idx should be in the model file and in the model data
  expect_true(any(grepl('trend_idx', mod$model_file)))
  expect_true(!is.null(mod$model_data$trend_idx1))
})

test_that("dynamic to Hilbert works for trend_formulas", {
  beta_data$data_train$random <- rnorm(NROW(beta_data$data_train))
  mod <- mvgam(
    y ~ dynamic(random),
    trend_formula = ~ dynamic(random, k = 22),
    trend_model = RW(),
    data = beta_data$data_train,
    family = betar(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(code(mod))

  # Model file should have prior lines for observationgp terms
  expect_true(any(grepl(
    '// prior for gp(time):random...',
    mod$model_file,
    fixed = TRUE
  )))
  expect_true(any(grepl(
    "b[b_idx_gp_time_byrandom] = sqrt(spd_gp_exp_quad(",
    mod$model_file,
    fixed = TRUE
  )))

  # Model file should have prior lines for trend gp terms
  expect_true(any(grepl(
    '// prior for gp(time):random_trend...',
    mod$model_file,
    fixed = TRUE
  )))
  expect_true(any(grepl(
    "b_trend[b_trend_idx_gp_time_byrandom] = sqrt(spd_gp_exp_quad(",
    mod$model_file,
    fixed = TRUE
  )))

  # Observation-level Gp data structures should be in the model_data
  expect_true("l_gp_time_byrandom" %in% names(mod$model_data))
  expect_true("b_idx_gp_time_byrandom" %in% names(mod$model_data))
  expect_true("k_gp_time_byrandom" %in% names(mod$model_data))

  # Trend-level Gp data structures should be in the model_data
  expect_true("l_gp_trend_time_byrandom" %in% names(mod$model_data))
  expect_true("b_trend_idx_gp_time_byrandom" %in% names(mod$model_data))
  expect_true("k_gp_trend_time_byrandom" %in% names(mod$model_data))
})
nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.