#' load_emergency_department
#'
#' @param patient_ids double, patient ids
#' @param db_conn_struct list of Database objects
#'
#' @importFrom magrittr "%>%"
#' @importFrom rlang .data
#'
#' @return the ED attendance tibble
#'
#' @export
#'
load_emergency_department_v2 <- function(db_conn_struct,
patient_ids){
# Timing checks
ptm <- proc.time() # Start the clock
# Checks and adjustments
stopifnot(all(purrr::map_lgl(db_conn_struct, ~ checkmate::test_class(.x, "Database"))),
all(purrr::map_lgl(patient_ids, ~ is.double(.x))))
# Starting variables
. = NULL
# Extract data from each database / datatable as appropriate
if(db_conn_struct$sus_ae$is_connected){
var_dict <- create_data_table_variable_dictionary(db_conn_struct$sus_ae$table_name) #create the named list to convert to standardised naming
base_vars <- c(pseudo_nhs_id = var_dict[["pseudo_nhs_id"]], #grab the basic variables we'll need
episode_start_date = var_dict[["episode_start_date"]],
episode_end_date = var_dict[["episode_end_date"]],
episode_start_time = var_dict[["episode_start_time"]],
episode_end_time = var_dict[["episode_end_time"]],
episode_start_date_alt = var_dict[["episode_start_date_alt"]],
episode_end_date_alt = var_dict[["episode_end_date_alt"]],
episode_start_time_alt = var_dict[["episode_start_time_alt"]],
episode_end_time_alt = var_dict[["episode_end_time_alt"]])
primary_diagnosis_col <- c(primary_diagnosis_icd_code = var_dict[["primary_diagnosis_icd_code"]])
secondary_diagnosis_cols <- purrr::map(2:23, ~ var_dict[[sprintf("secondary_diagnosis_icd_code_%d",.x)]])
sec_std_var_names <- purrr::map(2:23, ~ sprintf("secondary_diagnosis_icd_code_%d",.x) )
names(secondary_diagnosis_cols) <- sec_std_var_names
secondary_diagnosis_cols <- unlist(secondary_diagnosis_cols)
all_vars <- c(base_vars, primary_diagnosis_col, secondary_diagnosis_cols) #combine all variable names to use for the initial select
# Auto-create the SQL query and execute
# Had to use filter_at() instead of newer filter(dplyr::across()) as I think it struggles to convert to SQL code
# https://stackoverflow.com/questions/26497751/pass-a-vector-of-variable-names-to-arrange-in-dplyr
# https://dplyr.tidyverse.org/articles/programming.html#fnref1
data <- db_conn_struct$sus_ae$data %>% #a reference to the SQL table
dplyr::select(dplyr::all_of(all_vars)) %>% #select the variables to work with
dplyr::distinct() %>%
dplyr::filter(!is.na(.data$pseudo_nhs_id) &
.data$pseudo_nhs_id %in% patient_ids) %>%
#dplyr::show_query() %>%
dplyr::collect() %>% #pull all the data to local
# needed this conversion to work at home
dplyr::mutate(episode_start_time = lubridate::ymd_hms(.data$episode_start_time),
episode_end_time = lubridate::ymd_hms(.data$episode_end_time)) %>%
dplyr::mutate(pseudo_nhs_id = as.numeric(.data$pseudo_nhs_id),
episode_start_time_alt = tidyr::replace_na(.data$episode_start_time, as.POSIXct(0, origin="1900-01-01", tz="UTC")),
episode_end_time_alt = tidyr::replace_na(.data$episode_end_time, as.POSIXct(0, origin="1900-01-01", tz="UTC")),
episode_start_date = dplyr::coalesce(.data$episode_start_date, .data$episode_start_date_alt),
episode_end_date = dplyr::coalesce(.data$episode_end_date, .data$episode_end_date_alt),
episode_start_time = dplyr::coalesce(.data$episode_start_time, .data$episode_start_time_alt),
episode_end_time = dplyr::coalesce(.data$episode_end_time, .data$episode_end_time_alt)) %>%
tidyr::drop_na(.data$episode_start_date,
.data$episode_end_date,
.data$episode_start_time,
.data$episode_end_time) %>%
dplyr::mutate(episode_start_time = lubridate::as_datetime(.data$episode_start_time),
episode_end_time = lubridate::as_datetime(.data$episode_end_time),
episode_start_date = lubridate::as_datetime(.data$episode_start_date),
episode_end_date = lubridate::as_datetime(.data$episode_end_date)) %>%
dplyr::mutate(episode_start_datetime = lubridate::ymd_hms(paste0(lubridate::year (.data$episode_start_date), "-",
lubridate::month (.data$episode_start_date), "-",
lubridate::day (.data$episode_start_date), "-",
" ",
lubridate::hour (.data$episode_start_time), ":",
lubridate::minute(.data$episode_start_time), ":",
lubridate::second(.data$episode_start_time)), tz = "GMT"),
episode_end_datetime = lubridate::ymd_hms(paste0(lubridate::year (.data$episode_end_date), "-",
lubridate::month (.data$episode_end_date), "-",
lubridate::day (.data$episode_end_date), "-",
" ",
lubridate::hour (.data$episode_end_time), ":",
lubridate::minute(.data$episode_end_time), ":",
lubridate::second(.data$episode_end_time)), tz = "GMT"),
spell_interval = lubridate::interval(.data$episode_start_datetime, .data$episode_end_datetime, tz="GMT")) %>%
tidyr::unite(., # concatenate the requested columns to a "," separated string
col = "secondary_diagnosis_icd_codes",
names(secondary_diagnosis_cols),
sep = ",",
remove = TRUE,
na.rm = TRUE) %>%
dplyr::mutate(primary_diagnosis_icd_code = purrr::map(.x = .data$primary_diagnosis_icd_code,
.f = function(x) gsub("[[:punct:] ]+","", x)),
secondary_diagnosis_icd_codes = purrr::map(.x = .data$secondary_diagnosis_icd_codes,
.f = function(x) purrr::map_chr(unique(unlist(strsplit(gsub(" ", "", x), ","))), ~ gsub("[[:punct:] ]+","", .x)) %>% unique(.) %>% purrr::discard(. == "")),
secondary_diagnosis_icd_codes = purrr::map(.data$secondary_diagnosis_icd_codes, function(x) if(identical(x, character(0))) NA_character_ else x)) %>%
dplyr::select(.data$pseudo_nhs_id,
.data$episode_start_datetime,
.data$spell_interval,
.data$primary_diagnosis_icd_code,
.data$secondary_diagnosis_icd_codes)
# Join on the ids; for some reason it doesn't like this in the above pipe....
ids <- data.frame(pseudo_nhs_id = patient_ids)
data <- dplyr::left_join(ids, data, by = "pseudo_nhs_id") %>% #creates NA entries for patients with missing data
dplyr::group_nest(.data$pseudo_nhs_id, .key = "ed_attendances")
}
# Stop the clock
message(paste("Time taken to execute load_admissions() =",
round((proc.time() - ptm)[3], digits=2)), " seconds")
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.