# Cargamos librerías --------------------------------------------------------------------------
library(data.table)
library(correlation)
data("males", package = "cyclismProj")
# Correlación de Spearman ---------------------------------------------------------------------
# Todas las correlaciones usando método de spearman
spearman_cors = correlation(
data = males,
p_adjust = "none",
method = "spearman"
) |>
subset(p < 0.05 & (grepl("delta", Parameter1) | grepl("delta", Parameter2)))
# Transformamos a data.table para acortar código
spearman_cors = as.data.table(spearman_cors)
# Filtramos aquellas asociaciones significativas
findings = spearman_cors[
p < 0.05,
.SD[order(abs(rho)), {
paste0(Parameter1, " y ", Parameter2, ", $\\rho$ = ", round(rho, 2), ", *p* = ", round(p, 3))
}]
]
# Reportamos los hallazgos
cat("# Hallazgos principales\n",
"## Correlaciones (Spearman)\n",
paste("- ", findings), "", sep = "\n",
file = "paper/analysis_findings.md")
file.edit("paper/analysis_findings.md")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.