##############################################
#### Run the hake scenarios (no EM) ##########
##############################################
library(TMB)
library(r4ss)
library(devtools)
library(PacifichakeMSE)
mod <- SS_output('inst/extdata/SS32018', printstats=FALSE, verbose = FALSE) # Read the true selectivity
# Set the seed
seedz <- 12345
set.seed(seedz)
df <- load_data_seasons(nseason = 4, nspace = 2, bfuture = 0.5) # Prepare data for operating model
parms.true <- getParameters_OM(TRUE,mod, df) # Load parameters from assessment
time <- 1
yrinit <- df$nyear
nruns <- 1000
seeds <- floor(runif(n = nruns, min = 1, max = 1e6))
### Run the OM and the EM for x number of years in the MSE
### Set targets for harvesting etc
#
simyears <- 30 # Project 30 years into the future (2048 that year)
year.future <- c(df$years,(df$years[length(df$years)]+1):(df$years[length(df$years)]+simyears))
N0 <- NA
sim.data <- run.agebased.true.catch(df) # Run the operating model until 2018
simdata0 <- sim.data # The other one is gonna get overwritten.
### Loop MSE's with different errors in future survey and recruitment
ls.save <- list()
ls.converge <- matrix(0, nruns)
# # #
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 1, df = df, cincrease = 0, mincrease = 0, runOM = FALSE)
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
save(ls.save,file = 'results/Climate/perfect/MSErun_move_JMC_climate_0_HYBR_TAC1_perfect.Rdata')
# #
# # # # ### Loop MSE's with different errors in future survey and recruitment
# ls.save <- list()
# ls.converge <- matrix(0, nruns)
#
#
# for (i in 1:nruns){
# tmp <- run_multiple_MSEs(simyears = simyears,
# seeds = seeds[i],
# TAC = 1, df = df, cincrease = 0.02, mincrease = 0.005, runOM = FALSE)
# #tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
# print(i)
#
# if(is.list(tmp)){
# ls.save[[i]] <-tmp
# ls.converge[i] <- 1
# }else{
# ls.save[[i]] <- NA
# ls.converge[i] <- 0
# }
#
#
# }
# # # # #
# save(ls.save,file = 'results/Climate/perfect/MSErun_move_JMC_climate_0_02_HYBR_TAC1_perfect.Rdata')
#
# # # ### Loop ls.save <- list()
# ls.save <- list()
# ls.converge <- matrix(0, nruns)
#
# for (i in 1:nruns){
# tmp <- run_multiple_MSEs(simyears = simyears,
# seeds = seeds[i],
# TAC = 1, df = df, cincrease = 0.04, mincrease = 0.02, runOM = FALSE)
# #tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
# print(i)
#
# if(is.list(tmp)){
# ls.save[[i]] <-tmp
# ls.converge[i] <- 1
# }else{
# ls.save[[i]] <- NA
# ls.converge[i] <- 0
# }
#
#
# }
# # # # #
# save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_04_HYBR_TAC1_perfect.Rdata')
# # #
# # #
# ls.save <- list()
# ls.converge <- matrix(0, nruns)
#
#
# for (i in 1:nruns){
# tmp <- run_multiple_MSEs(simyears = simyears,
# seeds = seeds[i],
# TAC = 2, df = df, cincrease = 0, mincrease = 0, runOM = FALSE)
# print(i)
#
# if(is.list(tmp)){
# ls.save[[i]] <-tmp
# ls.converge[i] <- 1
# }else{
# ls.save[[i]] <- NA
# ls.converge[i] <- 0
# }
#
#
# }
#
# # # # #
# save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_HYBR_TAC2_perfect.Rdata')
# # # #
# # ### Loop MSE's with different errors in future survey and recruitment
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 2, df = df, cincrease = 0.02, mincrease = 0.005, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_02_HYBR_TAC2_perfect.Rdata')
#
# ### Loop ls.save <- list()
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 2, df = df, cincrease = 0.04, mincrease = 0.02, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/perfect/MSErun_move_JMC_climate_0_04_HYBR_TAC2_perfect.Rdata')
### Loop MSE's with different errors in future survey and recruitment
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 3, df = df, cincrease = 0, mincrease = 0, runOM = FALSE)
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_HYBR_TAC3_perfect.Rdata')
rm(ls.save)
# # ### Loop MSE's with different errors in future survey and recruitment
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 3, df = df, cincrease = 0.02, mincrease = 0.005, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_02_HYBR_TAC3_perfect.Rdata')
# ### Loop ls.save <- list()
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_MSEs(simyears = simyears,
seeds = seeds[i],
TAC = 3, df = df, cincrease = 0.04, mincrease = 0.02, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_04_HYBR_TAC3_perfect.Rdata')
source('R_scripts/run_multiple_unfished.R')
# ### Loop ls.save <- list()
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_unfished(simyears = simyears,
seeds = seeds[i],
TAC = 0, df = df, cincrease = 0., mincrease = 0.)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_0_HYBR_perfect_nofishing.Rdata')
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_unfished(simyears = simyears,
seeds = seeds[i],
TAC = 0, df = df, cincrease = 0.02, mincrease = 0.005, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
# # # #
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_02_HYBR_perfect_nofishing.Rdata')
# ### Loop ls.save <- list()
ls.save <- list()
ls.converge <- matrix(0, nruns)
for (i in 1:nruns){
tmp <- run_multiple_unfished(simyears = simyears,
seeds = seeds[i],
TAC = 0, df = df, cincrease = 0.04, mincrease = 0.02, runOM = FALSE)
#tmp <- run_multiple_MSEs(simyears = 30, seeds[i])
print(i)
if(is.list(tmp)){
ls.save[[i]] <-tmp
ls.converge[i] <- 1
}else{
ls.save[[i]] <- NA
ls.converge[i] <- 0
}
}
save(ls.save,file = 'results/Climate/MSErun_move_JMC_climate_0_04_HYBR_perfect_nofishing.Rdata')
# Run the three climate scenarios with 0 recruitment devs
df <- load_data_seasons(nseason = 4, nspace = 2, bfuture = 0, logSDR = 0, yr_future = 100,
) # Prepare data for operating model
parms.true <- getParameters_OM(TRUE,mod) # Load parameters from assessment
sim.data <- run.agebased.true.catch(df) # Run the operating model until 2018
df <- load_data_seasons(nseason = 1, nspace = 1, bfuture = 0, logSDR = 0, yr_future = 100) # Prepare data for operating model
sim.data0 <- run.agebased.true.catch(df) # Run the operating model until 2018
plot(rowSums(sim.data$SSB))
lines(rep(sum(sim.data$SSB0), 200))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.