library(babelmixr2)
library(PopED)
##-- Model: One comp first order absorption + inhibitory imax
## -- works for both mutiple and single dosing
f <- function() {
ini({
tV <- 72.8
tKa <- 0.25
tCl <- 3.75
tFavail <- fix(0.9)
tE0 <- 1120
tImax <- 0.807
tIC50 <- 0.0993
eta.v ~ 0.09
eta.ka ~ 0.09
eta.cl ~ 0.25^2
eta.e0 ~ 0.09
conc.prop.sd <- fix(sqrt(0.04))
conc.sd <- fix(sqrt(5e-6))
eff.prop.sd <- fix(sqrt(0.09))
eff.sd <- fix(sqrt(100))
})
model({
V<- tV*exp(eta.v)
KA <- tKa*exp(eta.ka)
CL <- tCl*exp(eta.cl)
Favail <- tFavail
E0 <- tE0*exp(eta.e0)
IMAX <- tImax
IC50 <- tIC50
# PK
N <- floor(time/TAU)+1
CONC <- (DOSE*Favail/V)*(KA/(KA - CL/V)) *
(exp(-CL/V * (time - (N - 1) * TAU)) *
(1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) -
exp(-KA * (time - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
# PD model
EFF <- E0*(1 - CONC*IMAX/(IC50 + CONC))
CONC ~ add(conc.sd) + prop(conc.prop.sd)
EFF ~ add(eff.sd) + prop(eff.prop.sd)
})
}
# Note that design point 240 is repeated
e1 <- et(c( 1,2,8,240, 240)) %>%
as.data.frame() %>%
dplyr::mutate(dvid=1)
e1$low <- c(0,0,0,240, 240)
e1$high <- c(10,10,10,248, 248)
# Since the design point is repeated, there needs to be a grouping
# variable which is defined in the dataset as G_xt since it is defined
# in PopED as G_xt
e1$G_xt <- seq_along(e1$low)
e2 <- e1
e2$dvid <- 2
e <- rbind(e1, e2)
babel.db <- nlmixr2(f, e, "poped",
popedControl(
groupsize=20,
discrete_xt = list(0:248),
bUseGrouped_xt=TRUE,
a=list(c(DOSE=20,TAU=24),
c(DOSE=40, TAU=24),
c(DOSE=0, TAU=24)),
maxa=c(DOSE=200,TAU=40),
mina=c(DOSE=0,TAU=2),
ourzero=0
))
## create plot of model and design
plot_model_prediction(babel.db,facet_scales="free")
plot_model_prediction(babel.db,IPRED=T,DV=T,facet_scales="free",separate.groups=T)
## evaluate initial design
# Original PopED
## $rse
## V KA CL E0 IMAX IC50 d_V d_KA d_CL
## 8.119842 9.968612 4.304635 7.076883 9.895340 39.478269 38.960998 58.523188 25.832775
## d_E0
## 22.036110
evaluate_design(babel.db)
# Original:
## > shrinkage(poped.db)
## # A tibble: 12 × 6
## d_V d_KA d_CL d_E0 type group
## <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 0.358 0.573 0.134 0.171 shrink_var all_groups
## 2 0.359 0.575 0.135 0.173 shrink_var grp_1
## 3 0.358 0.571 0.134 0.175 shrink_var grp_2
## 4 1 1 1 0.167 shrink_var grp_3
## 5 0.199 0.346 0.0696 0.0898 shrink_sd all_groups
## 6 0.199 0.348 0.0699 0.0906 shrink_sd grp_1
## 7 0.199 0.345 0.0694 0.0915 shrink_sd grp_2
## 8 1 1 1 0.0872 shrink_sd grp_3
## 9 0.220 0.251 0.144 0.124 se all_groups
## 10 0.180 0.227 0.0918 0.125 se grp_1
## 11 0.179 0.227 0.0915 0.125 se grp_2
## 12 0.3 0.3 0.25 0.123 se grp_3
shrinkage(babel.db)
# Optimization
# Note: The parallel option does not work well with Windows machines at this moment.
# Please set parallel = FALSE if you are working on a Windows machine
output <- poped_optim(babel.db, opt_xt = T, parallel = T)
summary(output)
# Original:
# V KA CL E0 IMAX IC50 d_V d_KA d_CL d_E0
# 7.378959 9.224199 4.363698 4.923343 5.945328 24.169815 37.404330 58.360336 27.113994 22.005904
get_rse(output$FIM,output$poped.db)
plot_model_prediction(output$poped.db,facet_scales="free")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.