knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE, out.width = "100%" ) ## These options cache the models and the model simulations in R ## To run the actual models on your system, take the save options off. ## nlmixrVersion <- as.character(packageVersion("nlmixr")); ## options(nlmixr.save=TRUE, ## nlmixr.save.dir=file.path(system.file(package="nlmixr"), nlmixrVersion)); ## if (!dir.exists(getOption("nlmixr.save.dir"))) ## dir.create(getOption("nlmixr.save.dir"))

Joint PK/PD models, or PK/PD models where you fix certain components are common in pharmacometrics. A classic example, (provided by Tomoo Funaki and Nick Holford) is Warfarin.
library(nlmixr) library(ggplot2)
In this example, we have a transit-compartment (from depot to gut to central volume) PK model and an effect compartment for the PCA measurement.
Below is an illustrated example of a model that can be applied to the data:
pk.turnover.emax <- function() { ini({ tktr <- log(1) tka <- log(1) tcl <- log(0.1) tv <- log(10) ## eta.ktr ~ 1 eta.ka ~ 1 eta.cl ~ 2 eta.v ~ 1 prop.err <- 0.1 pkadd.err <- 0.1 ## temax <- logit(0.8) #temax <- 7.5 tec50 <- log(0.5) tkout <- log(0.05) te0 <- log(100) ## eta.emax ~ .5 eta.ec50 ~ .5 eta.kout ~ .5 eta.e0 ~ .5 ## pdadd.err <- 10 }) model({ ktr <- exp(tktr + eta.ktr) ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) ## #poplogit = log(temax/(1-temax)) emax=expit(temax+eta.emax) #logit=temax+eta.emax ec50 = exp(tec50 + eta.ec50) kout = exp(tkout + eta.kout) e0 = exp(te0 + eta.e0) ## DCP = center/v PD=1-emax*DCP/(ec50+DCP) ## effect(0) = e0 kin = e0*kout ## d/dt(depot) = -ktr * depot d/dt(gut) = ktr * depot -ka * gut d/dt(center) = ka * gut - cl / v * center d/dt(effect) = kin*PD -kout*effect ## cp = center / v cp ~ prop(prop.err) + add(pkadd.err) effect ~ add(pdadd.err) }) }
Notice there are two endpoints in the model cp and effect. Both
are modeled in nlmixr using the ~ "modeled by" specification.
To see more about how nlmixr will handle the multiple compartment model, it is quite informative to parse the model and print the information about that model. In this case an initial parsing would give:
ui <- nlmixr(pk.turnover.emax) ui
In the middle of the printout, it shows how the data must be formatted
(using the cmt and dvid data items) to allow nlmixr to model the
multiple endpoint appropriately.
Of course if you are interested you can directly access the
information in ui$multipleEndpoint.
ui$multipleEndpoint
Notice that the cmt and dvid items can use the named variables
directly as either the cmt or dvid specification. This flexible
notation makes it so you do not have to rename your compartments to
run nlmixr model functions.
The other thing to note is that the cp is specified by an ODE
compartment above the number of compartments defined in the RxODE
part of the nlmixr model. This is because cp is not a defined
compartment, but a related variable cp.
The last thing to notice that the cmt items are numbered cmt=5 for
cp or cmt=4 for effect even though they were specified in the
model first by cp and cmt. This ordering is because effect is a
compartment in the RxODE system. Of course cp is related to the
compartment central, and it may make more sense to pair cp with
the central compartment.
If this is something you want to have you can specify the compartment
to relate the effect to by the | operator. In this case you would
change
cp ~ prop(prop.err) + add(pkadd.err)
to
cp ~ prop(prop.err) + add(pkadd.err) | central
With this change, the model could be updated to:
pk.turnover.emax2 <- function() { ini({ tktr <- log(1) tka <- log(1) tcl <- log(0.1) tv <- log(10) ## eta.ktr ~ 1 eta.ka ~ 1 eta.cl ~ 2 eta.v ~ 1 prop.err <- 0.1 pkadd.err <- 0.1 ## temax <- logit(0.8) tec50 <- log(0.5) tkout <- log(0.05) te0 <- log(100) ## eta.emax ~ .5 eta.ec50 ~ .5 eta.kout ~ .5 eta.e0 ~ .5 ## pdadd.err <- 10 }) model({ ktr <- exp(tktr + eta.ktr) ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) ## emax=expit(temax+eta.emax) ec50 = exp(tec50 + eta.ec50) kout = exp(tkout + eta.kout) e0 = exp(te0 + eta.e0) ## DCP = center/v PD=1-emax*DCP/(ec50+DCP) ## effect(0) = e0 kin = e0*kout ## d/dt(depot) = -ktr * depot d/dt(gut) = ktr * depot -ka * gut d/dt(center) = ka * gut - cl / v * center d/dt(effect) = kin*PD -kout*effect ## cp = center / v cp ~ prop(prop.err) + add(pkadd.err) | center effect ~ add(pdadd.err) }) } ui2 <- nlmixr(pk.turnover.emax2) ui2$multipleEndpoint
Notice in this case the cmt variables are numbered sequentially and
the cp variable matches the center compartment.
When dvid and cmt are combined in the same dataset, the cmt data
item is always used on the event information and the dvid is used on
the observations. nlmixr expects the cmt data item to match the
dvid item for observations OR to be either zero or one for the
dvid to replace the cmt information.
If you do not wish to use dvid items to define multiple endpoints in
nlmixr, you can set the following option:
options(RxODE.combine.dvid=FALSE) ui2$multipleEndpoint
Then only cmt items are used for the multiple endpoint models. Of
course you can turn it on or off for different models if you wish:
options(RxODE.combine.dvid=TRUE) ui2$multipleEndpoint
With this information, we can use the built-in warfarin dataset in nlmixr:
summary(warfarin)
Since dvid specifies pca as the effect endpoint, you can update the
model to be more explicit making one last change:
cp ~ prop(prop.err) + add(pkadd.err) effect ~ add(pdadd.err)
to
cp ~ prop(prop.err) + add(pkadd.err) effect ~ add(pdadd.err) | pca
pk.turnover.emax3 <- function() { ini({ tktr <- log(1) tka <- log(1) tcl <- log(0.1) tv <- log(10) ## eta.ktr ~ 1 eta.ka ~ 1 eta.cl ~ 2 eta.v ~ 1 prop.err <- 0.1 pkadd.err <- 0.1 ## temax <- logit(0.8) tec50 <- log(0.5) tkout <- log(0.05) te0 <- log(100) ## eta.emax ~ .5 eta.ec50 ~ .5 eta.kout ~ .5 eta.e0 ~ .5 ## pdadd.err <- 10 }) model({ ktr <- exp(tktr + eta.ktr) ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) emax = expit(temax+eta.emax) ec50 = exp(tec50 + eta.ec50) kout = exp(tkout + eta.kout) e0 = exp(te0 + eta.e0) ## DCP = center/v PD=1-emax*DCP/(ec50+DCP) ## effect(0) = e0 kin = e0*kout ## d/dt(depot) = -ktr * depot d/dt(gut) = ktr * depot -ka * gut d/dt(center) = ka * gut - cl / v * center d/dt(effect) = kin*PD -kout*effect ## cp = center / v cp ~ prop(prop.err) + add(pkadd.err) effect ~ add(pdadd.err) | pca }) }
fit.TOS <- nlmixr(pk.turnover.emax3, warfarin, "saem", control=list(print=0), table=list(cwres=TRUE, npde=TRUE)) print(fit.TOS)
plot(fit.TOS); v1s <- nlmixr::vpc(fit.TOS, show=list(obs_dv=T), scales="free_y") + ylab("Warfarin Cp [mg/L] or PCA") + xlab("Time [h]") v2s <- nlmixr::vpc(fit.TOS, show=list(obs_dv=T), pred_corr = TRUE) + ylab("Prediction Corrected Warfarin Cp [mg/L] or PCA") + xlab("Time [h]") library(patchwork) v1s / v2s
## FOCEi fit/vpcs fit.TOF <- nlmixr(pk.turnover.emax3, warfarin, "focei", control=list(print=0), table=list(cwres=TRUE, npde=TRUE));
print(fit.TOF) plot(fit.TOF) v1f <- nlmixr::vpc(fit.TOF, show=list(obs_dv=T), scales="free_y") + ylab("Warfarin Cp [mg/L] or PCA") + xlab("Time [h]") v2f <- nlmixr::vpc(fit.TOF, show=list(obs_dv=T), pred_corr = TRUE) + ylab("Prediction Corrected Warfarin Cp [mg/L] or PCA") + xlab("Time [h]") v1f / v2f
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.