#' @include fermat.R
#' @include rexpokit-package.R
#sourcedir = '/Dropbox/_njm/'
#source3 = '_genericR_v1.R'
#source(paste(sourcedir, source3, sep=""))
#roxygenize()
# Re-source this R code after editing, without reinstalling from scratch:
# sourcedir = "/Dropbox/_njm/__packages/rexpokit_setup/"
# source8 = 'rexpokit_v1.R'
# source(paste(sourcedir, source8, sep=""))
# Original source:
#
#sourcedir = "/Dropbox/_njm/"
#source8 = '_matrix_utils_v1.R'
#source(paste(sourcedir, source8, sep=""))
# for e.g. calc_loglike
# sourcedir = '/Dropbox/_njm/'
# source3 = '_R_tree_functions_v1.R'
# source(paste(sourcedir, source3, sep=""))
#######################################################
# EXPOKIT-RELATED FUNCTIONS
#######################################################
#' EXPOKIT dgpadm matrix exponentiation on Q matrix
#'
#' This function exponentiates a matrix via the EXPOKIT padm function
#' (designed for small dense matrices) and wrapper function
#' \code{wrapalldgpadm_} around dmexpv.\cr
#'
#' From EXPOKIT:\cr
#'
#' \code{* Computes exp(t*H), the matrix exponential of a general matrix in }\cr
#' \code{* full, using the irreducible rational Pade approximation to the }\cr
#' \code{* exponential function exp(x) = r(x) = (+/-)( I + 2*(q(x)/p(x)) ), }\cr
#' \code{* combined with scaling-and-squaring. }\cr
#'
#' If \code{Qmat} is NULL (default), a default matrix is input.\cr
#'
#' @param Qmat an input Q transition matrix
#' @param t one or more time values to exponentiate by
#' @param transpose_needed If TRUE (default), matrix will be transposed (apparently
#' EXPOKIT needs the input matrix to be transposed compared to normal)
#' @return \code{tmpoutmat} the output matrix. \code{wrapalldmexpv_} produces
#' additional output relating to accuracy of the output matrix etc.; these can be
#' obtained by a direct call of wrapalldmexpv_.
#' @seealso \code{\link{mat2coo}}
#' @export
#' @author Nicholas J. Matzke \email{nickmatzke.ncse@@gmail.com} and Drew Schmidt \email{schmidt@@math.utk.edu}
#' @examples # Example:
#' # Make a square instantaneous rate matrix (Q matrix)
#' # This matrix is taken from Peter Foster's (2001) "The Idiot's Guide
#' # to the Zen of Likelihood in a Nutshell in Seven Days for Dummies,
#' # Unleashed" at:
#' # \url{http://www.bioinf.org/molsys/data/idiots.pdf}
#' #
#' # The Q matrix includes the stationary base freqencies, which Pmat
#' # converges to as t becomes large.
#' Qmat = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168,
#' 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
#'
#' # Make a series of t values
#' tvals = c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 14)
#'
#' # Exponentiate each with EXPOKIT's dgpadm (good for small dense matrices)
#' for (t in tvals)
#' {
#' Pmat = expokit_dgpadm_Qmat(Qmat=Qmat, t=t, transpose_needed=TRUE)
#' cat("\n\nTime=", t, "\n", sep="")
#' print(Pmat)
#' }
#'
expokit_dgpadm_Qmat <- function(Qmat=NULL, t=2.1, transpose_needed=TRUE)
{
defaults = '
Qmat=NULL
t = 2.1
transpose_needed=TRUE
'
# Check if Qmat is blank
if (is.null(Qmat))
{
# Default Qmat
warning("expokit_dgpadm_Qmat() was provided a Qmat with value NULL. Example Qmat provided instead")
Qmat = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168, 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
}
# Check if t is blank
if (is.null(t))
{
# Default Qmat
stop("\nSTOP ERROR: expokit_dgpadm_Qmat() was provided a t (time or times list) with value NULL. \n")
}
# FOR DGPADM
# ideg =
# "(input) the degree of the diagonal Pade to be used.
# a value of 6 is generally satisfactory."
ideg = as.integer(6)
# Order (numrows/numcols) of the matrix
# "(input) order of H."
m = as.integer(nrow(Qmat))
# output matrix
res = double(length=m*m)
# Prepare input matrix
matvec = Qmat
if (transpose_needed == TRUE)
{
tmatvec = t(matvec)
H = as.numeric(tmatvec)
} else {
H = as.numeric(matvec)
}
# "H(ldh,m) : (input) argument matrix."
# (ldh = numrows and m is numcols, or something)
ldh = m
if (!is.double(H))
storage.mode(H) <- "double"
res <- .Call(R_dgpadm, as.integer(ideg), as.integer(m), as.double(t), H, as.integer(ldh))
output = res$wsp
ind <- res$ind
output_Pmat_is = seq(ind, ind+m*m-1, by=1)
output_Pmat = output[output_Pmat_is]
output_Pmat = matrix(output_Pmat, nrow=m, byrow=TRUE)
return(output_Pmat)
}
#' EXPOKIT dmexpv matrix exponentiation on Q matrix
#'
#' This function converts a matrix to COO format and exponentiates
#' it via the EXPOKIT dmexpv function (designed for sparse matrices)
#' and wrapper functions \code{wrapalldmexpv_} around dmexpv.
#'
#' From EXPOKIT:\cr
#' \code{* The method used is based on Krylov subspace projection}\cr
#' \code{* techniques and the matrix under consideration interacts only}\cr
#' \code{* via the external routine 'matvec' performing the matrix-vector} \cr
#' \code{* product (matrix-free method).}\cr
#' \code{*}\cr
#' \code{* This is a customised version for Markov Chains. This means that a}\cr
#' \code{* check is done within this code to ensure that the resulting vector} \cr
#' \code{* w is a probability vector, i.e., w must have all its components }\cr
#' \code{* in [0,1], with sum equal to 1. This check is done at some expense}\cr
#' \code{* and the user may try DGEXPV which is cheaper since it ignores }\cr
#' \code{* probability constraints.}\cr
#'
#' COO (coordinated list) format is a compressed format that is\cr
#' required for EXPOKIT's sparse-matrix functions (like dmexpv and\cr
#' unlike EXPOKIT's padm-related functions.\cr
#'
#' COO (coordinated list) format is described here:\cr
#'
#' \url{http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29}\cr
#'
#' If \code{Qmat} is NULL (default), a default matrix is input.\cr
#'
#' @param Qmat an input Q transition matrix
#' @param t one or more time values to exponentiate by
#' @param inputprobs_for_fast If NULL (default), the full probability matrix (Pmat) is returned. However, the full
#' speed of EXPOKIT on sparse matrices will be exploited if inputprobs_for_fast=c(starting probabilities). In this case
#' these starting probabilities are input to \code{myDMEXPV} directly, as \code{v}, and \code{w}, the output probabilities,
#' are returned.
#' @param transpose_needed If TRUE (default), matrix will be transposed (apparently
#' EXPOKIT needs the input matrix to be transposed compared to normal)
#' @param transform_to_coo_TF Should the matrix be tranposed to COO? COO format is required
#' for EXPOKIT's sparse-matrix functions (like dmexpv and unlike the padm-related
#' functions. Default TRUE; if FALSE, user must put a COO-formated matrix in \code{Qmat}. Supplying the
#' coo matrix is probably faster for repeated calculations on large matrices.
#' @param coo_n If a COO matrix is input, \code{coo_n} specified the order (# rows, equals # columns) of the matrix.
#' @param anorm \code{dmexpv} requires an initial guess at the norm of the matrix. Using the
#' @param check_for_0_rows If TRUE or a numeric value, the input Qmat is checked for all-zero rows, since these will crash the FORTRAN wrapalldmexpv function. A small nonzero value set to check_for_0_rows or the default (0.0000000000001) is input to off-diagonal cells in the row (and the diagonal value is normalized), which should fix the problem.
#' R function \code{\link{norm}} might get slow with large matrices. If so, the user
#' can input a guess manually (\code{Lagrange} seems to just use 1 or 0, if I
#' recall correctly).
#' @return \code{tmpoutmat} the output matrix. \code{wrapalldmexpv_} produces
#' additional output relating to accuracy of the output matrix etc.; these can be
#' by a direct call of dmexpv.
#' @seealso \code{\link{mat2coo}}
#' @seealso \code{\link{expokit_dmexpv_wrapper}}
#' @seealso \code{\link{expokit_wrapalldmexpv_tvals}}
#' @export
#' @author Nicholas J. Matzke \email{nickmatzke.ncse@@gmail.com} and Drew Schmidt \email{schmidt@@math.utk.edu}
#' @examples # Example:
#' # Make a square instantaneous rate matrix (Q matrix)
#' # This matrix is taken from Peter Foster's (2001) "The Idiot's Guide
#' # to the Zen of Likelihood in a Nutshell in Seven Days for Dummies,
#' # Unleashed" at:
#' # \url{http://www.bioinf.org/molsys/data/idiots.pdf}
#' #
#' # The Q matrix includes the stationary base freqencies, which Pmat
#' # converges to as t becomes large.
#' Qmat = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168,
#' 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
#'
#' # Make a series of t values
#' tvals = c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 14)
#'
#' # Exponentiate each with EXPOKIT's dmexpv (should be fast for large sparse matrices)
#' for (t in tvals)
#' {
#' Pmat = expokit_dmexpv_Qmat(Qmat=Qmat, t=t, transpose_needed=TRUE)
#' cat("\n\nTime=", t, "\n", sep="")
#' print(Pmat)
#' }
#'
expokit_dmexpv_Qmat <- function(Qmat=NULL, t=2.1, inputprobs_for_fast=NULL, transpose_needed=TRUE, transform_to_coo_TF=TRUE, coo_n=NULL, anorm=NULL, check_for_0_rows=TRUE)
{
defaults = '
Qmat=NULL
t = 2.1
inputprobs_for_fast=NULL
transpose_needed=TRUE
transform_to_coo_TF=TRUE
coo_n=NULL
anorm=NULL
check_for_0_rows=FALSE
check_for_0_rows=1e-15
'
matvec = Qmat
# Check if Qmat is blank
if (is.null(matvec))
{
# Default Qmat
warning("expokit_dmexpv_Qmat() was provided a Qmat with value NULL. Example Qmat provided instead")
matvec = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168, 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
}
# Check if t is blank
if (is.null(t))
{
# Default Qmat
stop("\nSTOP ERROR: expokit_dmexpv_Qmat() was provided a t (time or times list) with value NULL. \n")
}
# Zero rows will crash the FORTRAN wrapalldmexpv function, and
# therefore crash R. This is annoying.
if (is.null(inputprobs_for_fast))
{ # Return the full Pmat (slow)
#######################################################
# Return the Pmat
#######################################################
# Zero rows will crash the FORTRAN wrapalldmexpv function, and
# therefore crash R. This is annoying.
if (check_for_0_rows != FALSE)
{
# If not false, check_for_0_rows is either TRUE or numeric
# Get T/F for rows with all zeros
rows_w_all_zeros_TF = findrows_w_all_zeros(matvec)
# If all FALSE, do nothing
if (all(rows_w_all_zeros_TF == FALSE))
{
# Do nothing
pass = 1
} else {
# indices of TRUE
rows_allzero_indices = seq(1, length(rows_w_all_zeros_TF), 1)[rows_w_all_zeros_TF]
# Here, you have to input a small value for each zero
if (is.numeric(check_for_0_rows))
{
check_for_0_rows = check_for_0_rows
} else {
# 1e-15 appears to be the precision limit of the FORTRAN code
check_for_0_rows = 1e-15
}
# Input the given value into all zeros
newrowvals = rep(check_for_0_rows, ncol(matvec))
matvec[rows_allzero_indices, ] = newrowvals
diagonal_val = -1 * sum(newrowvals[-1])
matvec[rows_allzero_indices, rows_allzero_indices] = diagonal_val
warning(paste(sum(rows_w_all_zeros_TF), " rows of the Q matrix Qmat had all zeros. This will crash .Call('wrapalldmexpv_', ...)\nand therefore expokit_wrapalldmexpv_tvals() run with the inputprobs_for_fast=NULL option (producing a full Pmat),\nand therefore R. Replacement value for 0: check_for_0_rows=", check_for_0_rows, ".\n", sep=""))
}
}
}
# Count the number of NON-zeros (nz)
# and input the matrix size
if (transform_to_coo_TF == TRUE)
{
# COO format
# http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
# number of non-zeros
nz = sum(matvec != 0)
# These vectors have that length
ia = integer(length=nz)
ja = integer(length=nz)
a = double(length=nz)
n=nrow(matvec)
} else {
n = coo_n
# (And make a regular matrix from COO)
# number of non-zeros
# Assumes that coo-formatted matrix columns are
# ia, ja, a
nz = sum(matvec[,"a"] != 0)
}
# ideg = degree of polynomial, 6 is usually considered sufficient
ideg = as.integer(6)
#n=nrow(Qmat) # don't do here, possibly coo-formatted
m=n-1
# t=as.numeric(2.1)
# v should have as many elements as n; first element = 1 (?)
if (is.null(inputprobs_for_fast))
{
# Input space-fillers, these get written over by wrapall
v=double(n)
v[1] = 1
# Input the input probabilities, these get used directly by myDMEXPV/myDGEXPV
} else {
v = double(n)
v = inputprobs_for_fast
}
# w is the same length
tol=as.numeric(0.01)
# lwsp = length of wsp
# wsp = workspace to hold various variables, cells of the matrix, etc.
#lwsp = as.integer(n*(m+1)+n+(m+2)^2 + 4*(m+2)^2+ideg+1)
#lwsp = as.integer(n*(m+1)+n+(m+2)^2 + 5*(m+2)^2+ideg+1)
# 2017-10-23_NJM_edit -- produces NAs when result is
# n=21700
# m=21699
# ideg=6
# n*(m+2)+5*(m+2)^2+ideg+1
# [1] 2825578712
#lwsp = as.integer(n*(m+2)+5*(m+2)^2+ideg+1)
lwsp = as.double(n*(m+2)+5*(m+2)^2+ideg+1)
#lwsp = 100
wsp = double(length=lwsp)
# length of iwsp
liwsp = max(m+2, 7)
iwsp = integer(length=liwsp)
#matvec = matrix(data=Q, nrow=n, byrow=TRUE)
matvec = matvec
# Don't transform if already coo
if ((transform_to_coo_TF == TRUE) && (transpose_needed == TRUE))
{
tmatvec = t(matvec)
} else {
tmatvec = matvec
}
#rowSums(tmatvec)
#colSums(tmatvec)
# This might (?) get slow with large matrices -- doesn't seem to
if ((exists("anorm") == FALSE) || is.null(anorm))
{
# Use the 1-norm or one-norm
if (transform_to_coo_TF==FALSE && transpose_needed==FALSE)
{
tmpQmat1 = coo2mat(matvec, n=coo_n)
tmpQmat2 = t(tmpQmat1)
anorm = as.numeric(norm(tmpQmat2, type="O"))
} else {
anorm = as.numeric(norm(matvec, type="O"))
}
}
# Make the input COO matrix
# COO = coordinate list format, useful for sparse matrices with lots of zeros:
# http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
# ia = rownum in the matrix
# ja = colnum in the matrix
# a = value of that cell
if (transform_to_coo_TF == TRUE)
{
tmpmat_in_REXPOKIT_coo_fmt = mat2coo(tmatvec)
} else {
tmpmat_in_REXPOKIT_coo_fmt = matvec
}
# Either way, store the rows/columns in the input variables for FORTRAN
ia = tmpmat_in_REXPOKIT_coo_fmt[,"ia"]
ja = tmpmat_in_REXPOKIT_coo_fmt[,"ja"]
a = tmpmat_in_REXPOKIT_coo_fmt[,"a"]
# Return the full Pmat (slow)
if (is.null(inputprobs_for_fast))
{
# However, this may be an inefficient use of the dmexpv sparse matrix capabilities (Hansen)
# Try mydmexpv_ to just get the ancestral probabilities (w, res2[[5]])
output_Pmat = expokit_dmexpv_wrapper(n=n, m=m, t=t, v=v, tol=tol, anorm=anorm, wsp=wsp, lwsp=lwsp, iwsp=iwsp, liwsp=liwsp, ia=ia, ja=ja, a=a, nz=nz)
return(output_Pmat)
} else {
# Instead of returning the full Pmat (slow), just return the output probabilities (fast)
# Be sure to input the input probabilities
v = inputprobs_for_fast
# w, list item #5, contains the output probabilities
w_output_probs = expokit_mydmexpv_wrapper(n=n, m=m, t=t, v=v, tol=tol, anorm=anorm, wsp=wsp, lwsp=lwsp, iwsp=iwsp, liwsp=liwsp, ia=ia, ja=ja, a=a, nz=nz)
return(w_output_probs)
}
}
#######################################################
#
# NOTE: DGEXPV section. Same code as dmexpv, but EXPOKIT's DGEXPV should be
# faster than DMEXPV, however DMEXPV runs an accuracy check appropriate for
# Markov chains, which is not done in DGEXPV.
#
#######################################################
#' EXPOKIT dgexpv matrix exponentiation on Q matrix
#'
#' This function converts a matrix to COO format and exponentiates
#' it via the EXPOKIT dgexpv function (designed for sparse matrices)
#' and wrapper functions \code{wrapalldgexpv_} around dgexpv.\cr
#'
#'
#' NOTE: DGEXPV vs. DMEXPV. According to the EXPOKIT documentation, DGEXPV should be
#' faster than DMEXPV, however DMEXPV runs an accuracy check appropriate for
#' Markov chains, which is not done in DGEXPV.\cr
#'
#' From EXPOKIT:\cr
#'
#' \code{* The method used is based on Krylov subspace projection}\cr
#' \code{* techniques and the matrix under consideration interacts only}\cr
#' \code{* via the external routine 'matvec' performing the matrix-vector} \cr
#' \code{* product (matrix-free method).}\cr
#' \code{*}\cr
#' \code{* This [DMEXPV, not DGEXPV -- NJM] is a customised version for Markov Chains. This means that a}\cr
#' \code{* check is done within this code to ensure that the resulting vector }\cr
#' \code{* w is a probability vector, i.e., w must have all its components }\cr
#' \code{* in [0,1], with sum equal to 1. This check is done at some expense}\cr
#' \code{* and the user may try DGEXPV which is cheaper since it ignores }\cr
#' \code{* probability constraints.}\cr
#'
#' I (NJM) have not noticed a difference between the outputs of these two functions, but it might
#' occur with large matrices.
#'
#' COO (coordinated list) format is a compressed format that is
#' required for EXPOKIT's sparse-matrix functions (like dgexpv and
#' unlike EXPOKIT's padm-related functions. COO format is described here:\cr
#'
#' \url{http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29}\cr
#'
#' If \code{Qmat} is NULL (default), a default matrix is input.\cr
#'
#' @param Qmat an input Q transition matrix
#' @param t a time value to exponentiate by
#' @param inputprobs_for_fast If NULL (default), the full probability matrix (Pmat) is returned. However, the full
#' speed of EXPOKIT on sparse matrices will be exploited if inputprobs_for_fast=c(starting probabilities). In this case
#' these starting probabilities are input to \code{myDMEXPV} directly, as \code{v}, and \code{w}, the output probabilities,
#' are returned.
#' @param transpose_needed If TRUE (default), matrix will be transposed (apparently
#' EXPOKIT needs the input matrix to be transposed compared to normal)
#' @param transform_to_coo_TF Should the matrix be tranposed to COO? COO format is required
#' for EXPOKIT's sparse-matrix functions (like dmexpv and unlike the padm-related
#' functions. Default TRUE; if FALSE, user must put a COO-formated matrix in \code{Qmat}. Supplying the
#' coo matrix is probably faster for repeated calculations on large matrices.
#' @param coo_n If a COO matrix is input, \code{coo_n} specified the order (# rows, equals # columns) of the matrix.
#' @param anorm \code{dgexpv} requires an initial guess at the norm of the matrix. Using the
#' R function \code{\link{norm}} might get slow with large matrices. If so, the user
#' can input a guess manually (\code{Lagrange} seems to just use 1 or 0, if I
#' recall correctly).
#' @param check_for_0_rows If TRUE or a numeric value, the input Qmat is checked for all-zero rows, since these will crash the FORTRAN wrapalldmexpv function. A small nonzero value set to check_for_0_rows or the default (0.0000000000001) is input to off-diagonal cells in the row (and the diagonal value is normalized), which should fix the problem.
#' @return \code{tmpoutmat} the output matrix. \code{wrapalldgexpv_} produces
#' additional output relating to accuracy of the output matrix etc.; these can be
#' by a direct call of dgexpv.
#' @seealso \code{\link{mat2coo}}
#' @seealso \code{\link{expokit_dgexpv_wrapper}}
#' @seealso \code{\link{expokit_wrapalldgexpv_tvals}}
#' @export
#' @author Nicholas J. Matzke \email{nickmatzke.ncse@@gmail.com} and Drew Schmidt \email{schmidt@@math.utk.edu}
#' @examples # Example:
#' # Make a square instantaneous rate matrix (Q matrix)
#' # This matrix is taken from Peter Foster's (2001) "The Idiot's Guide
#' # to the Zen of Likelihood in a Nutshell in Seven Days for Dummies,
#' # Unleashed" at:
#' # \url{http://www.bioinf.org/molsys/data/idiots.pdf}
#' #
#' # The Q matrix includes the stationary base freqencies, which Pmat
#' # converges to as t becomes large.
#' Qmat = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168,
#' 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
#'
#' # Make a series of t values
#' tvals = c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 14)
#'
#' # Exponentiate each with EXPOKIT's dgexpv (should be fast for large sparse matrices)
#' for (t in tvals)
#' {
#' Pmat = expokit_dgexpv_Qmat(Qmat=Qmat, t=t, transpose_needed=TRUE)
#' cat("\n\nTime=", t, "\n", sep="")
#' print(Pmat)
#' }
#'
#' # DMEXPV and DGEXPV are designed for large, sparse Q matrices (sparse = lots of zeros).
#' # DMEXPV is specifically designed for Markov chains and so may be slower, but more accurate.
#'
#' # DGEXPV, single t-value
#' expokit_wrapalldgexpv_tvals(Qmat=Qmat, tvals=tvals[1], transpose_needed=TRUE)
#' expokit_wrapalldgexpv_tvals(Qmat=Qmat, tvals=2)
#'
#' # This function runs the for-loop itself (sadly, we could not get mapply() to work
#' # on a function that calls dmexpv/dgexpv), returning a list of probability matrices.
#'
#' # DGEXPV functions
#' list_of_P_matrices_dgexpv = expokit_wrapalldgexpv_tvals(Qmat=Qmat,
#' tvals=tvals, transpose_needed=TRUE)
#' list_of_P_matrices_dgexpv
#'
expokit_dgexpv_Qmat <- function(Qmat=NULL, t=2.1, inputprobs_for_fast=NULL, transpose_needed=TRUE, transform_to_coo_TF=TRUE, coo_n=NULL, anorm=NULL, check_for_0_rows=TRUE)
{
defaults = '
Qmat=NULL
t = 2.1
inputprobs_for_fast=NULL
transpose_needed=TRUE
transform_to_coo_TF=TRUE
coo_n=NULL
anorm=NULL
check_for_0_rows=FALSE
check_for_0_rows=1e-15
'
matvec = Qmat
# Check if Qmat is blank
if (is.null(matvec))
{
# Default Qmat
warning("expokit_dgexpv_Qmat() was provided a Qmat with value NULL. Example Qmat provided instead")
matvec = matrix(c(-1.218, 0.504, 0.336, 0.378, 0.126, -0.882, 0.252, 0.504, 0.168, 0.504, -1.05, 0.378, 0.126, 0.672, 0.252, -1.05), nrow=4, byrow=TRUE)
}
# Check if t is blank
if (is.null(t))
{
# Default Qmat
stop("\nSTOP ERROR: expokit_dgexpv_Qmat() was provided a t (time or times list) with value NULL. \n")
}
# Zero rows will crash the FORTRAN wrapalldgexpv function, and
# therefore crash R. This is annoying.
if (is.null(inputprobs_for_fast))
{ # Return the full Pmat (slow)
#######################################################
# Return the Pmat
#######################################################
# Zero rows will crash the FORTRAN wrapalldgexpv function, and
# therefore crash R. This is annoying.
if (check_for_0_rows != FALSE)
{
# If not false, check_for_0_rows is either TRUE or numeric
# Get T/F for rows with all zeros
rows_w_all_zeros_TF = findrows_w_all_zeros(matvec)
# If all FALSE, do nothing
if (all(rows_w_all_zeros_TF == FALSE))
{
# Do nothing
pass = 1
} else {
# indices of TRUE
rows_allzero_indices = seq(1, length(rows_w_all_zeros_TF), 1)[rows_w_all_zeros_TF]
# Here, you have to input a small value for each zero
if (is.numeric(check_for_0_rows))
{
check_for_0_rows = check_for_0_rows
} else {
# 1e-15 appears to be the precision limit of the FORTRAN code
check_for_0_rows = 1e-15
}
# Input the given value into all zeros
newrowvals = rep(check_for_0_rows, ncol(matvec))
matvec[rows_allzero_indices, ] = newrowvals
diagonal_val = -1 * sum(newrowvals[-1])
matvec[rows_allzero_indices, rows_allzero_indices] = diagonal_val
warning(paste(sum(rows_w_all_zeros_TF), " rows of the Q matrix Qmat had all zeros. This will crash .Call('wrapalldgexpv_', ...)\nand therefore expokit_wrapalldgexpv_tvals() run with the inputprobs_for_fast=NULL option (producing a full Pmat),\nand therefore R. Replacement value for 0: check_for_0_rows=", check_for_0_rows, ".\n", sep=""))
}
}
}
# Count the number of NON-zeros (nz)
# and input the matrix size
if (transform_to_coo_TF == TRUE)
{
# COO format
# http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
# number of non-zeros
nz = sum(matvec != 0)
# These vectors have that length
ia = integer(length=nz)
ja = integer(length=nz)
a = double(length=nz)
n=nrow(matvec)
} else {
n = coo_n
# (And make a regular matrix from COO)
# number of non-zeros
# Assumes that coo-formatted matrix columns are
# ia, ja, a
nz = sum(matvec[,"a"] != 0)
}
# ideg = degree of polynomial, 6 is usually considered sufficient
ideg = as.integer(6)
#n=nrow(Qmat) # don't do here, possibly coo-formatted
m=n-1
# t=as.numeric(2.1)
# v should have as many elements as n; first element = 1 (?)
if (is.null(inputprobs_for_fast))
{
# Input space-fillers, these get written over by wrapall
v=double(n)
v[1] = 1
# Input the input probabilities, these get used directly by myDGEXPV/myDGEXPV
} else {
v = double(n)
v = inputprobs_for_fast
}
# w is the same length
w = double(length=n)
tol=as.numeric(0.01)
# lwsp = length of wsp
# wsp = workspace to hold various variables, cells of the matrix, etc.
#lwsp = as.integer(n*(m+1)+n+(m+2)^2 + 4*(m+2)^2+ideg+1)
#lwsp = as.integer(n*(m+1)+n+(m+2)^2 + 5*(m+2)^2+ideg+1)
lwsp = as.integer(n*(m+2)+5*(m+2)^2+ideg+1)
#lwsp = 100
wsp = double(length=lwsp)
# length of iwsp
liwsp = max(m+2, 7)
iwsp = integer(length=liwsp)
#matvec = matrix(data=Q, nrow=n, byrow=TRUE)
matvec = matvec
# Don't transform if already coo
if ((transform_to_coo_TF == TRUE) && (transpose_needed == TRUE))
{
tmatvec = t(matvec)
} else {
tmatvec = matvec
}
#rowSums(tmatvec)
#colSums(tmatvec)
# This might (?) get slow with large matrices -- doesn't seem to
if ((exists("anorm") == FALSE) || is.null(anorm))
{
# Use the 1-norm or one-norm
if (transform_to_coo_TF==FALSE && transpose_needed==FALSE)
{
tmpQmat1 = coo2mat(matvec, n=coo_n)
tmpQmat2 = t(tmpQmat1)
anorm = as.numeric(norm(tmpQmat2, type="O"))
} else {
anorm = as.numeric(norm(matvec, type="O"))
}
}
# The itrace flag, if set to 1, results in dgexpv printing some details of
# the function's run to screen.
itrace = 0
iflag = 0
# Make the input COO matrix
# COO = coordinate list format, useful for sparse matrices with lots of zeros:
# http://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
# ia = rownum in the matrix
# ja = colnum in the matrix
# a = value of that cell
if (transform_to_coo_TF == TRUE)
{
tmpmat_in_REXPOKIT_coo_fmt = mat2coo(tmatvec)
} else {
tmpmat_in_REXPOKIT_coo_fmt = matvec
}
# Either way, store the rows/columns in the input variables for FORTRAN
ia = tmpmat_in_REXPOKIT_coo_fmt[,"ia"]
ja = tmpmat_in_REXPOKIT_coo_fmt[,"ja"]
a = tmpmat_in_REXPOKIT_coo_fmt[,"a"]
# Run the wrapper function
if (is.null(inputprobs_for_fast))
{
######################################
# Return the full Pmat (slow)
######################################
ret <- .Call(R_dgexpv,
as.integer(n), as.integer(m), as.double(t),
as.double(v), as.double(tol),
as.double(anorm), as.double(wsp), as.integer(lwsp),
as.integer(iwsp), as.integer(liwsp),
as.integer(ia), as.integer(ja),
as.double(a), as.integer(nz))
# wrapalldgexpv_ returns all kinds of stuff, list item 18 is the P matrix
# However, this may be an inefficient use of the dgexpv sparse matrix capabilities (Hansen)
# Try mydgexpv_ to just get the ancestral probabilities (w, res2[[5]])
output_Pmat = matrix(ret$res, nrow=n, byrow=TRUE)
return(output_Pmat)
} else {
######################################
# Instead of returning the full Pmat (slow), just return the output probabilities (fast)
######################################
# Be sure to input the input probabilities
v = inputprobs_for_fast
ret <- .Call(R_dgexpv,
as.integer(n), as.integer(m), as.double(t),
as.double(v), as.double(tol),
as.double(anorm), as.double(wsp), as.integer(lwsp),
as.integer(iwsp), as.integer(liwsp),
as.integer(ia), as.integer(ja),
as.double(a), as.integer(nz))
# w, list item #5, contains the output probabilities
# 2017-10-23_fix
#w_output_probs = matrix(ret$w, ncol=n, byrow=TRUE)
w_output_probs = ret
return(w_output_probs)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.