Description Usage Arguments Value See Also Examples
Create feature vectors that can be used for logit modeling
1 | getFeatureVectors(patternDays, events)
|
patternDays |
list of patterns found by cSPADE,
for each pattern there is a list of patientIDs (see |
event |
dataframe, rows are single events (used as input to cSPADE), columns are event details plus patient demogrpahics, tumor laterality, survival labels and MGMT biomarker |
dataframe, where rows are clinical visits, and columns are features of the visit that can be used for logit modeling: binary temporal (cSPADE patterns) events, demographic data, biomarkers, and tumor lateriality.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | data("fake_data")
outputDir <- '~/test'
# save tumor location and laterility strings before event cleaning
fake_tumorInfo <- fake_data$events
fake_demo <- fake_data$demo
# clean data
fake_data$events <- cleanData(fake_data$events, tType = 'rate')
cat('...',nrow(fake_data$events), " events left for SPM after cleaning", '\n')
# collect patient info for each event
fake_data <- merge(fake_data$events, fake_data$person, by='iois', all.x=T)
# prep for each event, since age does change
# get survival labels, these also change
fake_data <- prepDemographics(fake_data, fake_demo)
fake_data <- prepSurvivalLabels(fake_data)
# get first tumor location
fake_data <- getTumorLocation(fake_data, fake_tumorInfo)
# spm
pSPM <- getSeqPatterns(event = fake_data,
transFilename = file.path(outputDir, 'example_transactions.txt'),
createT = T,
support = 0.4,
maxgap = 60,
maxlen = 2,
maxsize = 2)
pSPM$patterns <- as(pSPM$freqseq, "data.frame")
pSPM$patterns$sequence <- as.character(pSPM$patterns$sequence)
# days when pattern occur
patternDays <- findPatternDays(pSPM$patterns, pSPM$data, maxgap=60)
# feature vectors to supply to logits
feat_vecs <- getFeatureVectors(patternDays, events=pSPM$data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.