Description Usage Arguments Details Examples
Fit logit model using cross-validation
1 2 3 |
formula |
char or formula object |
trainData |
dataframe, rows are samples to be classified, columns are features including sample ids |
index |
list of ints, each element is an array, see |
metric |
char, see |
lasso |
logical, whether to use lasso regularization |
llength |
num, number of lambdas to consider up to |
lmax |
num, maximum lambda to consider, cannot be NULL if lambda is NULL |
seed |
int, seed for split |
lambda |
num, consider one lambda, |
verbose |
|
folds |
int, number of folds for cross-validation |
Trains logits using glmnet
and caret
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | # use training partition to create folds for CV
data("features_ratechange_sup0.4g60l2z2") # features and labels for each clinical visit
t <- 'rate'
maxgap <- 60
maxlen <- 2
# format
names <- colnames(feats)
feats <- data.frame(id=row.names(feats),feats)
colnames(feats) <- c('id',names)
feats <- prepLaterality(feats)
feats <- prepLocation(feats)
feats <- removeVisits(feats,
maxgap=maxgap,
maxlength=maxlen,
tType=t,
save=F,
outDir=NA)
labels <- getClassLabels()
needToRemove <- c('id','iois','eventID', # remove ids
labels, # remove labels
'IDH1') # not interested
# data partitions
train.ids <- sample(feats$id, size=floor(0.80*nrow(feats)), replace = F) # random
feats <- feats[feats$id %in% train.ids,] #training data
ind <- getTrainingFolds(trainEvents=feats,
folds=3,
seed=1,
verbose=T)
feats <- prepLogitData(data = feats,
formula = 'survivalIn60 ~ .',
labelName = 'survivalIn60',
needToRemove=needToRemove)
# logit
fit <- getFit(formula = 'survivalIn60 ~ .',
trainData = feats,
index = ind,
lasso = TRUE,
llength = 100,
lmax = 0.2,
metric = 'rocAUC',
seed = 1,
verbose = T)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.