Description Usage Arguments Details Value Examples
Create data for logit model.
1 2 |
data |
dataframe, rows are samples, cols are features plus some metadata not meant for modeling and will be removed |
formula |
char or formula object |
labelName |
char, column name of binary label |
predictors |
char, names of columns in |
needToRemove |
char, names of columns in |
createModelMatrix |
logical, call |
Removes non-features and non-labels.
Creates dataframe ready to serve as input to logit fit,
see model.matrix
. Removes rows with any 'NA' values.
dataframe ready for logit fitting
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # use training partition to create folds for CV
data("features_ratechange_sup0.4g60l2z2") # features and labels for each clinical visit
t <- 'rate'
maxgap <- 60
maxlen <- 2
# format
names <- colnames(feats)
feats <- data.frame(id=row.names(feats),feats)
colnames(feats) <- c('id',names)
feats <- prepLaterality(feats)
feats <- prepLocation(feats)
feats <- removeVisits(feats,
maxgap=maxgap,
maxlength=maxlen,
tType=t,
save=F,
outDir=NA)
labels <- getClassLabels()
needToRemove <- c('id','iois','eventID', # remove ids
labels, # remove labels
'IDH1') # not interested
# data partitions
train.ids <- sample(feats$id, size=floor(0.80*nrow(feats)), replace = F) # random
feats <- feats[feats$id %in% train.ids,] #training data
ind <- getTrainingFolds(trainEvents=feats,
folds=3,
seed=1,
verbose=T)
feats <- prepLogitData(data = feats,
formula = 'survivalIn60 ~ .',
labelName = 'survivalIn60',
needToRemove=needToRemove)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.