filterGeneExpr: Filter genes based on their expression

View source: R/data_geNormalisationFiltering.R

filterGeneExprR Documentation

Filter genes based on their expression

Description

Uses filterByExpr to determine genes with sufficiently large counts to retain for statistical analysis.

Usage

filterGeneExpr(
  geneExpr,
  minMean = 0,
  maxMean = Inf,
  minVar = 0,
  maxVar = Inf,
  minCounts = 10,
  minTotalCounts = 15
)

Arguments

geneExpr

Data frame or matrix: gene expression

minMean

Numeric: minimum of read count mean per gene

maxMean

Numeric: maximum of read count mean per gene

minVar

Numeric: minimum of read count variance per gene

maxVar

Numeric: maximum of read count variance per gene

minCounts

Numeric: minimum number of read counts per gene for a worthwhile number of samples (check filterByExpr for more information)

minTotalCounts

Numeric: minimum total number of read counts per gene

Value

Boolean vector indicating which genes have sufficiently large counts

See Also

Other functions for gene expression pre-processing: convertGeneIdentifiers(), normaliseGeneExpression(), plotGeneExprPerSample(), plotLibrarySize(), plotRowStats()

Examples

geneExpr <- readFile("ex_gene_expression.RDS")

# Add some genes with low expression
geneExpr <- rbind(geneExpr,
                  lowReadGene1=c(rep(4:5, 10)),
                  lowReadGene2=c(rep(5:1, 10)),
                  lowReadGene3=c(rep(10:1, 10)),
                  lowReadGene4=c(rep(7:8, 10)))

# Filter out genes with low reads across samples
geneExpr[filterGeneExpr(geneExpr), ]

nuno-agostinho/psichomics documentation built on Jan. 2, 2025, 4:10 a.m.