View source: R/analysis_dimReduction_pca.R
performPCA | R Documentation |
Perform principal component analysis after processing missing values
performPCA(
data,
center = TRUE,
scale. = FALSE,
missingValues = round(0.05 * nrow(data)),
...
)
data |
an optional data frame (or similar: see
|
center |
a logical value indicating whether the variables
should be shifted to be zero centered. Alternately, a vector of
length equal the number of columns of |
scale. |
a logical value indicating whether the variables should
be scaled to have unit variance before the analysis takes
place. The default is |
missingValues |
Integer: number of tolerated missing values per column to be replaced with the mean of the values of that same column |
... |
Arguments passed on to |
PCA result in a prcomp
object
Other functions to analyse principal components:
calculateLoadingsContribution()
,
plotPCA()
,
plotPCAvariance()
performPCA(USArrests)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.