reduceDimensionality: Reduce dimensionality after processing missing values from...

View source: R/analysis_dimReduction.R

reduceDimensionalityR Documentation

Reduce dimensionality after processing missing values from data frame

Description

Reduce dimensionality after processing missing values from data frame

Usage

reduceDimensionality(
  data,
  type = c("pca", "ica"),
  center = TRUE,
  scale. = FALSE,
  naTolerance = NULL,
  missingValues = round(0.05 * ncol(data)),
  ...
)

Arguments

data

Data frame: data

type

Character: dimensionality reduction technique (pca or ica)

center

either a logical value or numeric-alike vector of length equal to the number of columns of x, where ‘numeric-alike’ means that as.numeric(.) will be applied successfully if is.numeric(.) is not true.

scale.

Boolean: scale variables?

naTolerance

Integer: percentage of tolerated missing values per column (deprecated)

missingValues

Integer: number of tolerated missing values per column to be replaced with the mean of the values of that same column

...

Extra parameters passed to FUN

Value

PCA result in a prcomp object or ICA result object


nuno-agostinho/psichomics documentation built on Feb. 11, 2024, 11:16 p.m.