Description Usage Arguments Details References Examples
Calculate test statistic value (and P-value?) for testing fit to specified distribution.
1 |
statfun |
Name of one of the EDF statistics (see Details) |
x |
Vector of data to be tested for fit to the distribution |
dist |
Cumulative distribution function of distribution to be fitted |
... |
parameters to distribution |
Allowable test statistics are d (Kolmogorov D), v (Kuiper V),
w2 (Cramer-von Mises W-squared),
a2 (Anderson-Darling A-squared), u2 (Watson U-squared).
Statistics v and u2 are invariant to choice
of origin, so can be used for data on a circle (for example, for testing
uniformity of times of day). Also modified versions
dmod, vmod, w2mod, u2mod for use with Table 4.2
of D'Agostino and Stephens (1986).
D'Agostino and Stephens (1986) Goodness of Fit Techniques, Chapter 4.
1 2 3 4 5 6 7 8 9 10 11 | data(leghorn)
# test the transformed data for uniformity (default)
calc.stat(a2,leghorn$z1)
# test original data for normality with mean 200 and SD 35
calc.stat("a2",leghorn$x,pnorm,200,35)
# obtain all statistics
my.stats=c("d","v","w2","a2","u2","dmod","vmod","w2mod","u2mod")
sapply(my.stats,calc.stat,leghorn$x,pnorm,200,35)
# data that are actually beta-distributed
data(beta_data)
sapply(my.stats,calc.stat,beta_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.