Description Usage Arguments Author(s) See Also Examples
This function displays the parameter covariances of the distribution function parameters (e.g. the mass function parameters) fitted using dffit
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | dfplotcov(
data,
master = 1,
order = seq(length(data)),
names = NULL,
col = c("blue", "black", "red", "green", "orange"),
lwd = 1,
lty = 1,
cex = 1.2,
pch = 20,
cloud.alpha = 0.1,
cloud.nmax = NULL,
hist.alpha = 0.4,
show.histogram = TRUE,
show.cloud = TRUE,
show.gaussian = TRUE,
show.expectation = TRUE,
show.ellipse.68 = TRUE,
show.ellipse.95 = TRUE,
show.xlab = TRUE,
show.ylab = TRUE,
title = "",
nstd = 10,
pmin = NULL,
pmax = NULL,
vert.stretch = 1,
nbins = NULL,
lower = TRUE,
upper = FALSE,
margins = c(4, 4, 0.5, 0.5),
text.size.labels = 1.1,
text.size.numbers = 0.8,
text.offset.labels = c(0, 0),
text.offset.numbers = c(0, 0),
text.format.numbers = "%4.1f"
)
|
data |
List of objects to be plotted. Each object in this list must be one of the following four: (1) a vector of parameters; (2) a list of two objects, a vector of parameters and an associated covariance matrix; (3) a matrix, where each row represents a set of model parameters, to be displayed as a point of a cloud; (4) an output list produced by |
master |
Integer specifying the index of the object in the data list defining the axes scales |
order |
Vector of integer specifying the order of drawing. |
names |
Optional list of parameter names |
col |
Vector of colors of each object in the data-list |
lwd |
Vector of line width of each object in the data-list |
lty |
Vector of line types of each object in the data-list |
cex |
Vector of point sizes for the central parameters each object in the data-list |
pch |
Vector of point type for the central parameters each object in the data-list |
cloud.alpha |
Vector of alpha values setting the transparency of the point clouds |
cloud.nmax |
Vector specifying the maximum number of points to be plotted in a point cloud |
hist.alpha |
Vector of alpha values setting the transparency of the histograms |
show.histogram |
= Logical vector specifying whether to plot histograms |
show.cloud |
Logical vector specifying whether to plot the point cloud |
show.gaussian |
Logical vector specifying whether to draw the Gaussian apprixmation of the parameter distribution |
show.expectation |
Logical vector specifying whether to mark the expected values (= averages if a parameter set is specified) |
show.ellipse.68 |
Logical vector specifying whether to draw 68% confidence ellipses |
show.ellipse.95 |
Logical vector specifying whether to draw 95% confidence ellipses |
show.xlab |
Logical flag indicating whether labels+numbers along x-axis are displayed |
show.ylab |
Logical flag indicating whether labels+numbers along y-axis are displayed |
title |
Optional plot title |
nstd |
Width of the plots in multiples of the standard deviations of the model, i.e. the square roots of the diagonal elements of |
pmin |
optional P-vector with lower parameter limits to be potted. If given, |
pmax |
optional P-vector with lower parameter limits to be potted. If given, |
vert.stretch |
P-vector specifying the vertical stretch of the diagonal panels. |
nbins |
Optional integer specifying the number of bins used in histograms. If set to |
lower |
Logical flag indicating whether the lower triangle is shown |
upper |
Logical flag indicating whether the lower triangle is shown |
margins |
Plot margins (bottom,left,top,right) |
text.size.labels |
Text size of parameter names |
text.size.numbers |
Text size of numbers |
text.offset.labels |
2-element vector to adjust the position of the vertical and horizontal parameter names |
text.offset.numbers |
2-element vector to adjust the position of the vertical and horizontal numbers |
text.format.numbers |
String specifying the floating point format of the numbers. (see |
Danail Obreschkow
See examples in dffit
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # generate two random correlated vectors p[1,] and p[2,] of n elements
# and display their covariance plot
n = 100
p = array(NA,c(n,2))
p[,1] = rnorm(n)
p[,2] = 0.25*p[,1]+rnorm(n,1,0.5)
dfplotcov(list(p))
# now produce the same plot, but increase the number of bins
# add in red color the theoretical expectation
expected_mean = c(0,1)
expected_covariance = cbind(c(1,0.5^2),c(0.5^2,0.5^2+0.25^2))
dfplotcov(list(p,list(expected_mean,expected_covariance)), nbins=20, col=c('black','red'))
# Fit a Schechter function to a mock survey, plot the best-fitting parameters
# with uncertainties in blue and add input parameters as black crosses
dat = dfmockdata(n=1000,sigma=0.5)
survey = dffit(dat$x, dat$veff, dat$x.err)
ptrue = c(-2,11,-1.3)
dfplotcov(list(survey,ptrue), col=c('blue','black'), pch=c(20,3))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.