#' @title The Fleiss-Everitt version of the Stuart test for marginal homogeneity
#' @description The Fleiss-Everitt version of the Stuart test for marginal homogeneity
#' @description Described in Chapter 9 "The Paired cxc Table"
#' @param n the observed table (a cxc matrix)
#' @examples
#' FleissEveritt_test_paired_cxc(fleiss_2003)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
FleissEveritt_test_paired_cxc <- function(n) {
validateArguments(mget(ls()))
# This is the version with c=3 categories
c <- nrow(n)
nip <- apply(n, 1, sum)
npi <- apply(n, 2, sum)
if (c != 3) {
P <- NA
T <- NA
df <- NA
stop("This method can only be used for c=3 categories")
}
# Compute the differences between the marginal sums
d <- nip - npi
if (sum(d^2) == 0) {
P <- 1
T0 <- 0
df <- c - 1
stop("No differences between the marginal sums\nP = 1.0")
}
n23 <- (n[2, 3] + n[3, 2]) / 2
n13 <- (n[1, 3] + n[3, 1]) / 2
n12 <- (n[1, 2] + n[2, 1]) / 2
# The Fleiss-Everitt test statistic
T0 <- (n23 * d[1]^2 + n13 * d[2]^2 + n12 * d[3]^2) / (2 * (n12 * n23 + n12 * n13 + n13 * n23))
# Reference distribution: chi-squared with 2 degrees of freedom
df <- 2
P <- 1 - pchisq(T0, df)
return(
contingencytables_result(
list("Pvalue" = P, "T" = T0, "df" = df),
sprintf(
"The Fleiss-Everitt version of the Stuart test: P = %8.6f, T = %6.3f (df=%g)",
P, T0, df
)
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.