#' @title The Stuart test for marginal homogeneity
#' @description The Stuart test for marginal homogeneity
#' @description Described in Chapter 9 "The Paired cxc Table"
#' @param n the observed table (a cxc matrix)
#' @examples
#' # Pretherapy susceptability of pathogens (Peterson et al., 2007)
#' Stuart_test_paired_cxc(peterson_2007)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
Stuart_test_paired_cxc <- function(n) {
validateArguments(mget(ls()))
c <- nrow(n)
nip <- apply(n, 1, sum)
npi <- apply(n, 2, sum)
# Compute the differences between the marginal sums
d <- nip[1:(c - 1)] - npi[1:(c - 1)]
if (all(!is.na(d)) && sum(d) == 0) {
P <- 1
T0 <- 0
df <- c - 1
printresults <- function() {
cat_sprintf("No differences between the marginal sums\n")
cat_sprintf("P = 1.0")
}
return(
contingencytables_result(
list("Pvalue" = P, "T" = T0, "df" = df), printresults
)
)
}
# Form the null covariance matrix
Sigmahat0 <- matrix(0, c - 1, c - 1)
for (i in 1:(c - 1)) {
Sigmahat0[i, i] <- nip[i] + npi[i] - 2 * n[i, i]
for (j in 1:(c - 1)) {
if (i != j) {
Sigmahat0[i, j] <- -(n[i, j] + n[j, i])
}
}
}
# The Stuart test statistic
T0 <- sum(d * solve(Sigmahat0, d))
if (is.na(T0)) {
P <- 1
df <- c - 1
printresults <- function() {
cat_sprintf("The Stuart test statistic is not computable\n")
cat_sprintf("P = 1.0")
}
return(
contingencytables_result(
list(P = P, T0 = T0, df = df), printresults
)
)
}
# Reference distribution: chi-squared with c-1 degrees of freedom
df <- c - 1
P <- 1 - pchisq(T0, df)
printresults <- function() {
cat_sprintf("The Stuart test for marginal homogenity: P = %8.6f, T0 = %6.3f (df=%g)", P, T0, df)
}
return(
contingencytables_result(
list(P = P, T0 = T0, df = df), printresults
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.