#' @title The gamma coefficient with the bias-corrected and accelerated boostrap confidence interval
#' @description The gamma coefficient with the bias-corrected and accelerated boostrap confidence interval
#' @description Described in Chapter 7 "The rxc Table"
#' @param n the observed table (an rxc matrix)
#' @param nboot number of bootstrap samples
#' @param alpha the nominal significance level, used to compute a 100(1-alpha) confidence interval
#' @importFrom boot boot boot.ci
#' @examples
#' set.seed(9623)
#' gamma_coefficient_rxc_bca(table_7.7, nboot = 800)
#' gamma_coefficient_rxc_bca(table_7.8, nboot = 200)
#' \dontrun{
#' gamma_coefficient_rxc_bca(table_7.9, nboot = 3000, alpha = 0.2)
#' }
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
gamma_coefficient_rxc_bca <- function(n, nboot = 10000, alpha = 0.05) {
validateArguments(mget(ls()))
r <- nrow(n)
c <- ncol(n)
N <- sum(n)
# Put the observed data into long format for bootstrapping the two samples
Y1 <- rep(0, N)
Y2 <- rep(0, N)
id <- 0
for (i in 1:r) {
for (j in 1:c) {
if (n[i, j] > 0) {
for (k in 1:n[i, j]) {
id <- id + 1
Y1[id] <- i
Y2[id] <- j
}
}
}
}
# The estimate
gamma <- gamma_coefficient_rxc(n)$gamma
# The CI bootstrap sample
dat <- data.frame(Y1 = Y1, Y2 = Y2)
ans.boot <- boot(dat, f.gcrb, R = nboot, stype = "i")
ans.ci <- tryCatch(
boot.ci(ans.boot, conf = 1 - alpha, type = "bca"),
error = function(e) {
stop("Insufficient samples. Increase nboot.", call. = FALSE)
}
)
L <- ans.ci$bca[4]
U <- ans.ci$bca[5]
return(
contingencytables_result(
list("gamma" = gamma, "lower" = L, "upper" = U),
sprintf("The gamma coefficient w / BCa bootstrap CI: gamma = %7.4f (%g%% CI %7.4f to %7.4f)",
gamma, 100 * (1 - alpha), L, U
)
)
)
}
f.gcrb <- function(dat, d) {
Y1 <- dat[d, 1]
Y2 <- dat[d, 2]
n <- matrix(0, max(Y1), max(Y2))
for (id in seq_along(Y1)) {
n[Y1[id], Y2[id]] <- n[Y1[id], Y2[id]] + 1
}
res <- gamma_coefficient_rxc(n)
return(res$gamma)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.