#' The SUGS clustering algorithm by Wang and Dunson (2011)
#'
#' @import BiocParallel
#' @useDynLib sugsvarsel
#' @param mydata Data matrix with observations as rows
#' @param Model Character string indicating whether to use PML, ML or
#' both for model selection. "Both" defaults to PML.
#' @param iter The number of random orderings of the observations for which to run
#' sugs.
#' @param mu_0 The mean hyperparameter, default is the column means of the data matrix.
#' @param lambda_0 The variance of the Guassian mean prior, the dafault value is \code{0.01}.
#' @param nu_0 The degrees of freedom hyperparameter, the default value is \code{2 * (D + 2)}, where \code{D} is the number of variables.
#' @param S_0 The scale hyperparamter, the deault value is a tenth of the column variance of the data matrix.
#' @param betaHat A grid of hyperparameters for the dirichlet concentration parameter, the default is \code{c(1, 5, 15, 30, 50, 100)}.
#' @param a The scale of the gamma prior for the dirichlet concentration parameter, the dafault value is \code{10}.
#' @param b The rate of the gamma prior for the dirichlet concentration parameter, the default value is \code{1}.
#' @param BPPARAM Support for parallel processing using the
#' \code{BiocParallel} infrastructure. When missing (default),
#' the default registered \code{BiocParallelParam} parameters are
#' used. Alternatively, one can pass a valid
#' \code{BiocParallelParam} parameter instance: \code{SnowParam},
#' \code{MulticoreParam}, \code{DoparParam}, \ldots see the
#' \code{BiocParallel} package for details. To revert to the
#' origianl serial implementation, use \code{serialParam}.
#'
#'
#' @return A matrix of cluster allocation, K the number of clusters, a matrix
#' indicating the number of observations allocated to each cluster. The value of
#' the model selection criteria either log PML, log ML or both and the random orderings used
runSugs <- function(iter,
mydata,
Model,
mu_0 = NULL,
lambda_0 = 0.01,
nu_0 = NULL,
S_0 = NULL,
betaHat = c(1, 5, 15, 30, 50, 100),
a = 10,
b = 1,
BPPARAM = bpparam()
) {
#defensive tests
stopifnot(is.numeric(mydata))
stopifnot(is.numeric(iter))
if (iter <= 1) {
stop("iter must be an integer of at least 2 ")
}
if (!(Model %in% c("PML", "ML", "Both"))) {
stop("Please state a valid model selection criteria")
}
N <- nrow(mydata)
T <- iter
member <- matrix(0, T, N)
clusters <- matrix(0, T)
ordering <- matrix(0, T, N)
if (Model=="PML") {
LPML <- matrix(0, T)
} else if(Model=="Both") {
LPML <- matrix(0, T)
ML <- matrix(0, T)
} else{
ML <- matrix(0, T)
}
rand <- lapply(seq(1:(T-1)), function(x) sample(nrow(mydata)))
rand <- c(list(seq(1:N)), rand)
res <- bplapply(rand, function(x, mydata, Model, mu_0, lambda_0, nu_0, S_0,
betaHat, a, b){
suppressMessages(library(sugsvarsel))
sugs(mydata[x,], Model, mu_0 = mu_0, lambda_0 = lambda_0,
nu_0 = nu_0, S_0 = S_0, betaHat = betaHat, a = a, b = b)
},
mydata = mydata, Model = Model, mu_0 = mu_0, lambda_0 = lambda_0,
nu_0 = nu_0, S_0 = S_0, betaHat = betaHat, a = a, b = b, BPPARAM = BPPARAM )
member <- matrix(unlist(lapply(res, function(x) x$member)), ncol = N, byrow = TRUE)
clusters <- unlist(lapply(res, function(x) x$K))
ordering <- matrix(unlist(rand), ncol = N, byrow = TRUE)
if (Model=="PML") {
LPML <- unlist(lapply(res, function(x) x$LPML))
} else if (Model=="Both"){
LPML <- unlist(lapply(res, function(x) x$LPML))
ML <- unlist(lapply(res, function(x) x$ML))
} else{
ML <- unlist(lapply(res, function(x) x$ML))
}
if(Model=="PML"){
return(list(member=member, clusters=clusters, LPML=LPML, ordering = ordering))
}else if(Model=="Both"){
return(list(member=member, clusters=clusters, LPML=LPML, ML=ML, ordering = ordering))
} else{
return(list(member=member, clusters=clusters, ML=ML, ordering = ordering))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.