#' Perform clustering and variable selection using the SUGS algorithm.
#'
#' @param X A data matrix with rows as observations.
#' @param featiter The number of iterations of variable selection
#' @param clustiter The number of random ordering, for which to apply SUGS.
#' @param intfeatures A binary matrix of the intial variable set, probably chosen using function \code{pSelect}.
#' See documentation for \code{pSelect} for more details.
#' @param numSelect The total number of feature sets for the algorithm to intialise.
#' @param Model The method used for Model select, either PML, ML or Both. If you select both
#' the PML will be used to perform model selection.
#' @param mu_0 The mean hyperparameter, default is the column means of the data matrix.
#' @param lambda_0 The variance of the Guassian mean prior, the dafault value is \code{0.01}.
#' @param nu_0 The degrees of freedom hyperparameter, the default value is \code{D}, where \code{D} is the number of variables.
#' @param S_0 The scale hyperparamter, the deault value is a tenth of the column variance of the data matrix.
#' @param betaHat A grid of hyperparameters for the dirichlet concentration parameter, the default is \code{c(0.01, 0.1, 1, 5, 10, 15, 30, 50, 100)}.
#' @param a The scale of the gamma prior for the dirichlet concentration parameter, the dafault value is \code{10}.
#' @param b The rate of the gamma prior for the dirichlet concentration parameter, the default value is \code{1}.
#' @param w The prior probability of a variable belong to the irrelevant or relevant partition. The vector must
#' contain two entries the first entry being the probabiliy of being irreleavnt and the second being the probability of being relevant
#' The default value is \code{c(0.5,0.5)}.
#' @param Verbose Boolean to indicate whether or not to print curren iteration state
#' @param BPPARAM Support for parallel processing using the
#' \code{BiocParallel} infrastructure. When missing (default),
#' the default registered \code{BiocParallelParam} parameters are
#' used. Alternatively, one can pass a valid
#' \code{BiocParallelParam} parameter instance: \code{SnowParam},
#' \code{MulticoreParam}, \code{DoparParam}, \ldots see the
#' \code{BiocParallel} package for details. To revert to the
#' origianl serial implementation, use \code{NULL}.
#'
#'
#'
#' @return A vector of log marginal likelihoods, a matrix of memberships, the reorderings of the data and the associated feature sets.
sugsvarsel <- function(X,
featiter,
clustiter,
intfeatures,
numSelect,
Model,
mu_0 = NULL,
lambda_0 = 0.01,
nu_0 = NULL,
S_0 = NULL,
betaHat = c(0.01, 0.1, 1, 5, 10, 15, 30, 50, 100),
a = 10,
b = 1,
w = c(0.5, 0.5),
BPPARAM = bpparam(),
Verbose = T
){
#defensive tests
stopifnot(is.numeric(X))
stopifnot(is.numeric(featiter))
stopifnot(is.numeric(clustiter))
if (!(Model %in% c("PML", "ML", "Both"))) {
stop("Please state a valid model selection criteria")
}
stopifnot(is.numeric(numSelect))
stopifnot(numSelect > 0)
stopifnot(intfeatures %in% c(0,1))
stopifnot(!(is.null(ncol(X))))
stopifnot(ncol(X)==ncol(intfeatures))
SUGSfeatRes <- vector("list", 0)
if (numSelect==1) {
SUGSfeatRes <- runsugsvarsel(X, featiter, clustiter, intfeatures, Model,
mu_0 = mu_0, lambda_0 = lambda_0, nu_0 = nu_0,
S_0 = S_0, betaHat = betaHat, a = a, b = b,
w = w, BPPARAM=BPPARAM)
Result <- SUGSfeatRes
} else {
for (d in 1:numSelect) {
if(isTRUE(Verbose)){
cat("\n", "Starting initial iteration", d)
}
SUGSfeatRes[[d]] <- runsugsvarsel(X, featiter, clustiter, intfeatures[d,], Model,
mu_0 = mu_0, lambda_0 = lambda_0, nu_0 = nu_0,
S_0 = S_0, betaHat = betaHat, a = a, b = b,
w = w, BPPARAM=BPPARAM)
}
Result <- extract(X, SUGSfeatRes)
}
return((Result=Result))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.