library(PCE)
# USER INPUTS
#=======================
# The folder where the study intermediate and result files will be written:
outputFolder <- "./PCEResults"
# Details for connecting to the server:
dbms <- "you dbms"
user <- 'your username'
pw <- 'your password'
server <- 'your server'
port <- 'your port'
connectionDetails <- DatabaseConnector::createConnectionDetails(dbms = dbms,
server = server,
user = user,
password = pw,
port = port)
# Add the database containing the OMOP CDM data
cdmDatabaseSchema <- 'cdm database schema'
cdmDatabaseName <- 'A friendly name for the database name'
# Add a database with read/write access as this is where the cohorts will be generated
cohortDatabaseSchema <- 'work database schema'
oracleTempSchema <- NULL
# table name where the cohorts will be generated
cohortTable <- 'PCECohort'
# If you need to sample the data for speed (not useful when doing validation as model application is quick)
sampleSize <- NULL
# TAR settings
#========== Not recommended to edit ====
riskWindowStart <- 1
startAnchor <- 'cohort start'
riskWindowEnd <- 10*365
endAnchor <- 'cohort start'
firstExposureOnly <- F
removeSubjectsWithPriorOutcome <- T
priorOutcomeLookback <- 99999
requireTimeAtRisk <- F
minTimeAtRisk <- 1
includeAllOutcomes <- T
#=======================================
# with original calibration
PCE::execute(connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cdmDatabaseName = cdmDatabaseName,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
setting = data.frame(tId = rep(c(1325,1322,1326,1328,
1358,1359,1360,1361),2),
oId = c(rep(1466,8),rep(1357,8)),
model = rep(c('pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv',
'pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv'
),2)
),
sampleSize = sampleSize,
recalibrate = F,
riskWindowStart = riskWindowStart,
startAnchor = startAnchor,
riskWindowEnd = riskWindowEnd,
endAnchor = endAnchor,
firstExposureOnly = firstExposureOnly,
removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome,
priorOutcomeLookback = priorOutcomeLookback,
requireTimeAtRisk = requireTimeAtRisk,
minTimeAtRisk = minTimeAtRisk,
includeAllOutcomes = includeAllOutcomes,
outputFolder = outputFolder,
createCohorts = T,
runAnalyses = T,
aggregateCohorts = T,
viewShiny = F,
packageResults = T,
minCellCount= 5,
verbosity = "INFO",
cdmVersion = 5)
PCE::execute(connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cdmDatabaseName = paste0(cdmDatabaseName,'_recalibrationIntercept'),
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
setting = data.frame(tId = rep(c(1325,1322,1326,1328,
1358,1359,1360,1361),2),
oId = c(rep(1466,8),rep(1357,8)),
model = rep(c('pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv',
'pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv'
),2)
),
sampleSize = sampleSize,
recalibrateInterceptOnly = T,
riskWindowStart = riskWindowStart,
startAnchor = startAnchor,
riskWindowEnd = riskWindowEnd,
endAnchor = endAnchor,
firstExposureOnly = firstExposureOnly,
removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome,
priorOutcomeLookback = priorOutcomeLookback,
requireTimeAtRisk = requireTimeAtRisk,
minTimeAtRisk = minTimeAtRisk,
includeAllOutcomes = includeAllOutcomes,
outputFolder = outputFolder,
createCohorts = F,
runAnalyses = T,
aggregateCohorts = T,
viewShiny = F,
packageResults = T,
minCellCount= 5,
verbosity = "INFO",
cdmVersion = 5)
# recalibrate intercept and slope
PCE::execute(connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cdmDatabaseName = paste0(cdmDatabaseName,'_recalibration'),
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
setting = data.frame(tId = rep(c(1325,1322,1326,1328,
1358,1359,1360,1361),2),
oId = c(rep(1466,8),rep(1357,8)),
model = rep(c('pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv',
'pooled_male_black_model.csv',
'pooled_female_black_model.csv',
'pooled_male_non_black_model.csv',
'pooled_female_non_black_model.csv'
),2)
),
sampleSize = sampleSize,
recalibrate = T,
riskWindowStart = riskWindowStart,
startAnchor = startAnchor,
riskWindowEnd = riskWindowEnd,
endAnchor = endAnchor,
firstExposureOnly = firstExposureOnly,
removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome,
priorOutcomeLookback = priorOutcomeLookback,
requireTimeAtRisk = requireTimeAtRisk,
minTimeAtRisk = minTimeAtRisk,
includeAllOutcomes = includeAllOutcomes,
outputFolder = outputFolder,
createCohorts = F,
runAnalyses = T,
aggregateCohorts = T,
viewShiny = F,
packageResults = T,
minCellCount= 5,
verbosity = "INFO",
cdmVersion = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.