#' Visualize data for WIOD countries
#'
#' Plots a concise map of all countries from the World Input Output Database's
#' (WIOD) 2016 release, spit into three groups (broadly Asia, Americas, Europe),
#' to obtain a larger visualization for individual countries. Countries will be
#' colored according to the dataset passed to the function.
#'
#' @param plot_data dataframe/tibble containint a column "country" with iso3
#' codes from the WIOD and another column holding the data to visualize on a
#' map
#' @param row_label if TRUE a label with the value of 'ROW' in '`plot_data`'
#' will be placed in the ocean west of Australia
#' @param percent multiplies label values by 100, TRUE/FALSE
#' @param suffix character suffix to add to labels, e.g. "%"
#' @param digits number of digits to round labels to
#' @param reverse_colors if TRUE color scale will be reversed
#' @return Return a plot of all WIOD countries filled with the appropriate color
#' @export io_plot_wiot_map
io_plot_wiot_map <-
function(plot_data,
row_label = FALSE,
percent = FALSE,
suffix = NULL,
digits = 2,
reverse_colors = FALSE) {
# due to NSE notes in R CMD check
country <- NULL
if (length(colnames(plot_data)) != 2) {
stop("Plot data must be a dataframe/tibble with a column 'country' and only one further data column")
}
if (!(any(colnames(plot_data) == "country") &
any(colnames(plot_data) != "country"))) {
stop("Plot data must be a dataframe/tibble with a column 'country' and only one further data column")
}
data_name <- colnames(plot_data)[which(colnames(plot_data) != "country")]
data_col_id <- which(colnames(plot_data) == data_name)
colnames(plot_data)[data_col_id] <- "data_column"
# add geography so that data can be cropped according to subplot maps
plot_data <- dplyr::full_join(io_world_map, plot_data, by = "country")
sf::st_agr(plot_data) <- "constant" # avoid warnings
# bounding box will not cut rectangles with s2 see
# https://github.com/r-spatial/sf/issues/1725
s2_state <- sf::sf_use_s2()
suppressMessages(sf::sf_use_s2(FALSE))
plot_america <- subplot_wiot_map(
suppressMessages(
sf::st_crop(plot_data, c("xmin" = -170, "xmax" = -35, "ymin" = -60, "ymax" = 80))
),
plot_data,
percent,
suffix,
digits,
reverse_colors
)
plot_europe <- subplot_wiot_map(
suppressMessages(
sf::st_crop(plot_data, c("xmin" = -10, "xmax" = 45, "ymin" = 35, "ymax" = 70))
),
plot_data,
reverse_colors = reverse_colors
) +
ggplot2::theme(legend.position = "none")
plot_asia <- subplot_wiot_map(
suppressMessages(
sf::st_crop(plot_data, c("xmin" = 65, "xmax" = 160, "ymin" = -43, "ymax" = 60))
),
plot_data,
reverse_colors = reverse_colors
) +
ggplot2::theme(legend.position = "none")
suppressMessages(sf::sf_use_s2(s2_state))
if (row_label) {
row_value <- plot_data$data_column[plot_data$country == "ROW"]
if (percent) {
row_value <- round(row_value * 100, digits)
} else {
row_value <- round(row_value, digits)
}
row_value <- sprintf(paste0("%.", digits, "f"), row_value)
row_value <- paste0(row_value, suffix)
plot_asia <- plot_asia +
ggplot2::geom_sf_label(
# anker to Australie
data = dplyr::filter(plot_data, country == "AUS"),
nudge_x = -50,
nudge_y = 5,
size = 6,
label = paste0("ROW: ", row_value)
)
}
suppressWarnings(
cowplot::plot_grid(
plot_america + ggplot2::theme(panel.border = ggplot2::element_rect(fill = NA)),
plot_europe + ggplot2::theme(panel.border = ggplot2::element_rect(fill = NA)),
plot_asia + ggplot2::theme(panel.border = ggplot2::element_rect(fill = NA)),
nrow = 1, ncol = 3, align = "hv"))
}
#' @noRd
subplot_wiot_map <- function(subplot_data, plot_data, percent = FALSE, suffix = NULL, digits = 1, reverse_colors = FALSE) {
# due to NSE notes in R CMD check
data_column <- NULL
scale_labels <- seq(
min(plot_data$data_column, na.rm = TRUE),
max(plot_data$data_column, na.rm = TRUE),
length.out = 4)
if (percent) {
scale_labels <- round(scale_labels * 100, digits)
} else {
scale_labels <- round(scale_labels, digits)
}
scale_labels <- sprintf(paste0("%.", digits, "f"), scale_labels)
if (!is.null(suffix)) {
scale_labels <- paste0(scale_labels, suffix)
}
p <- ggplot2::ggplot(subplot_data) +
ggplot2::geom_sf(
color = "white",
ggplot2::aes(fill = data_column)
) +
# common scale according to values form all subplots
viridis::scale_fill_viridis(
NULL,
option = "A",
direction = (-1)^reverse_colors,
na.value = "grey90",
breaks =
seq(min(plot_data$data_column + 1e-9, na.rm = TRUE),
max(plot_data$data_column - 1e-9, na.rm = TRUE),
length.out = 4),
labels = scale_labels,
limits = range(plot_data$data_column, na.rm = TRUE)
) +
ggplot2::theme_void() +
ggplot2::theme(plot.title = ggplot2::element_text(face = "bold", size = 24),
legend.position = c(0.2,0.3),
legend.key.size = ggplot2::unit(12, "mm"),
legend.text = ggplot2::element_text(size = 16))
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.