#' Statistical summary plot of reflectance values
#'
#' @description Make a plot with statistical summary of reflectance values (mean, mean-standard deviation,
#' mean+standard deviation) for defined classes of surface.
#'
#' @param data reflectance data as dataframe with pixel values for Sentinel optical bands
#' B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12
#'
#' @param target_classes list of the classes of surface which should be highlighted, others
#' will be turned in gray, as a background. Defaults is NULL.
#'
#' @param point_size Size of points on a plot
#' @param fatten A multiplicative factor used to increase the size of points in comparison with standard deviation lines
#' @param x_dodge Position adjustment of points along the X-axis
#'
#' @return ggplot2 object with basic visual aesthetics.
#' Default aesthetics are line with statistical summary for each satellite band
#' ([geom_line()] + [geom_pointrange()]).
#' See [geom_linerange](https://ggplot2.tidyverse.org/reference/geom_linerange.html) and
#' [geom_path](https://ggplot2.tidyverse.org/reference/geom_path.html) documentation
#' for more details.
#'
#' Wavelengths values (nm) acquired from mean known value for each optical band of Sentinel 2 sensor
#' https://en.wikipedia.org/wiki/Sentinel-2
#'
#' @export
#' @import tibble reshape2 dplyr ggplot2
#' @importFrom stats na.omit
#' @importFrom stats sd
#' @importFrom rlang .data
#'
#' @examples
#' # Load example data
#' load(system.file("testdata/reflectance_test_data.RData", package = "spectralR"))
#'
#' # Create a summary plot
#' p <- stat.summary.plot(data = reflectance)
#'
#' # Customize a plot
#' p +
#' ggplot2::labs(x = 'Sentinel-2 bands', y = 'Reflectance',
#' colour = "Surface classes",
#' title = "Reflectance for different surface classes",
#' caption='Data: Sentinel-2 Level-2A\nmean ± standard deviation')+
#' ggplot2::theme_minimal()
#'
#' # Highlight only specific target classes
#' stat.summary.plot(
#' data = reflectance,
#' target_classes = list("meadow", "coniferous_forest")
#' )
#'
stat.summary.plot <- function(data, target_classes = NULL,
point_size = 0.6, fatten = 4, x_dodge = 0.2){
# Create "dummy" wavelength object, containing mean wavelengths (nm) for Sentinel 2A
# (https://en.wikipedia.org/wiki/Sentinel-2), for bands 2-12
dummy_wavelength <- c(492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4)
bands <- c("B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12")
waves <- cbind(bands, dummy_wavelength)
colnames(waves)[1] <- "variable"
# Reshape the dataframe to make it appropriate to ggplot2 syntax
df <- tibble::as_tibble(data) %>%
reshape2::melt(id = "label") %>%
left_join(as.data.frame(waves)) %>%
mutate(across("label", as.factor)) %>%
mutate(across("dummy_wavelength", as.numeric)) %>%
mutate(across("variable", as.factor)) %>%
mutate(across("value", as.numeric)) %>%
na.omit() %>%
mutate(variable = factor(.data$variable, ordered = TRUE,
levels = c("B2","B3","B4","B5","B6","B7","B8","B8A","B11","B12"))) %>%
group_by(.data$variable, .data$label) %>%
summarise(
mean_refl = mean(.data$value),
min_refl = mean(.data$value)-sd(.data$value),
max_refl = mean(.data$value)+sd(.data$value)) %>%
left_join(as.data.frame(waves)) %>%
mutate(across("dummy_wavelength", as.numeric)) %>%
rename(band = .data$variable, wavelength = .data$dummy_wavelength) %>%
mutate(band = factor(.data$band,
levels = c("B2","B3","B4","B5","B6","B7","B8","B8A","B11","B12")))
if (is.null(target_classes)) {
target_classes = as.list(levels(df$label))
} else {
target_classes = target_classes
}
if (length(target_classes) < length(levels(df$label))) {
# Create a subset for target classes only
target <- df %>%
filter(.data$label %in% target_classes)
# Create a subset for the rest of the classes
background <- df %>%
filter(!.data$label %in% target_classes)
# Make a plot
p <- ggplot()+
geom_line(
data = background,
aes_string(x = "band", y = "mean_refl", group = "label"),
colour = "gray",
position = position_dodge(width = x_dodge))+
geom_pointrange(
data = background,
aes_string(x = "band", y = "mean_refl", ymin = "min_refl", ymax = "max_refl"),
colour = "gray",
size = point_size, fatten = fatten,
position = position_dodge(width = x_dodge)) +
geom_line(
data = target,
aes_string(x = "band", y = "mean_refl", colour = "label", group = "label"),
position = position_dodge(width = x_dodge))+
geom_pointrange(
data = target,
aes_string(x = "band", y = "mean_refl", colour = "label", ymin = "min_refl", ymax = "max_refl"),
size = point_size, fatten = fatten,
position = position_dodge(width = x_dodge))
} else {
p <- ggplot(data = df, aes_string(x = "band", y = "mean_refl", colour = "label"))+
geom_line(aes_string(group = "label"), position = position_dodge(width = x_dodge))+
geom_pointrange(
aes_string(ymin = "min_refl", ymax = "max_refl"),
size = point_size, fatten = fatten,
position = position_dodge(width = x_dodge))
}
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.