merge_simulations: Combine multiple simulations into one result

View source: R/simulator.R

merge_simulationsR Documentation

Combine multiple simulations into one result

Description

we recommend to only merge simulations from the same dataset object, otherwise the count matrices might not correspond on the gene level

Usage

merge_simulations(simulation_list)

Arguments

simulation_list

a list of simulations

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

Examples

counts <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)

dataset <- SimBu::dataset(
  annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
  name = "test_dataset"
)

s1 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)

s2 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)

s <- SimBu::merge_simulations(list(s1, s2))

omnideconv/SimBu documentation built on Dec. 18, 2024, 8:34 a.m.