#' @title gv_mut_summary
#'
#' @description Given a table that contains genomic variants from samples of
#' interest, it summarises different aspects of such mutations and draws an
#' oncoplot.
#'
#' @param muts Data frame containing genomic variations. Necessary columns must
#' have the following names:
#' - Hugo_Symbol: Gene symbol from HGNC.
#' - Chromosome: Affected chromosome.
#' - Start_Position: Mutation start coordinate.
#' - End_Position: Mutation end coordinate.
#' - Reference_Allele: The plus strand reference allele at this position.
#' Includes the deleted sequence for a deletion or "-" for an insertion.
#' - Tumor_Seq_Allele2: Tumor sequencing discovery allele.
#' - Variant_Classification: Translational effect of variant allele. Can be one
#' of the following: Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del,
#' In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Silent, Splice_Site,
#' Translation_Start_Site, Nonstop_Mutation, RNA, Targeted_Region.
#' - Variant_Type: Type of mutation. Can be: 'SNP' (Single nucleotide polymorphism),
#' 'DNP' (Double nucleotide polymorphism), 'INS' (Insertion), 'DEL' (Deletion).
#' - Tumor_Sample_Barcode: Sample name.
#' @param metadata Data frame that contains supporting variables to the data.
#' @param response Unquoted name of the variable indicating the groups to analyse.
#' @param top_genes Number of genes to be analysed in the mutational summary.
#' @param specific_genes Genes that will be plotted in the oncoplot.
#' @param col.names Logical value to decide if tumour names are added to the plot.
#' @param colors Character vector indicating the colors of the different groups
#' to compare. Default values are two: black and orange.
#'
#' @return Prints two plots: A summary of sample mutations and an oncoplot.
#'
#' @export
#'
#' @importFrom maftools read.maf
#' @importFrom maftools plotmafSummary
#' @importFrom maftools oncoplot
#' @import rlang
#' @import dplyr
#'
#' @examples
#' gv_mut_summary(muts = sample_mutations,
#' metadata = sample_metadata,
#' response = MSI_status,
#' top_genes = 10,
#' specific_genes = NULL,
#' col.names = TRUE,
#' colors = c('orange', 'black'))
#'
#'
gv_mut_summary <- function(muts,
metadata,
response,
top_genes = 10,
specific_genes = NULL,
col.names = TRUE,
colors = c('black' ,'orange')){
# Process input as MAF file -----------------------------------------------
maf <- maftools::read.maf(maf = muts,
clinicalData = metadata %>%
dplyr::rename('Tumor_Sample_Barcode' = 'Samples'))
# Plot MAF Summary --------------------------------------------------------
maftools::plotmafSummary(maf = maf,
addStat = 'median',
titvRaw = FALSE,
top = top_genes)
par(mfrow = c(1,1))
# Oncoplot ----------------------------------------------------------------
# Enquote response variable
response <- rlang::enquo(response)
# Determine the order of the samples to separate between groups in the plot
samples_order <- metadata %>%
dplyr::arrange(!!response) %>%
dplyr::pull(Samples)
# Trick to not use quasiquotation with maftools oncoplot to define annotationColor
## Get the colname of the response variable so it is quoted
quoted.resp <- metadata %>%
dplyr::select(!!response) %>%
colnames(.)
## Get the levels in the response variable
resp.levels <- metadata %>%
dplyr::select(!!response) %>%
dplyr::pull(!!response)
## Associate user input colors to an object
cols <- colors
# Name the colors vector with the response variable names
names(cols) <- unique(resp.levels)
## Create a list with the named color vector
cols.list <- list(cols)
## Add the quoted named of the response variable as name of the list
names(cols.list) <- quoted.resp
# Plot oncoplot
maftools::oncoplot(maf = maf,
top = top_genes,
clinicalFeatures = quoted.resp,
genes = specific_genes,
sampleOrder = samples_order,
showTumorSampleBarcodes = col.names,
sortByAnnotation = TRUE,
annotationColor = cols.list)
par(mfrow = c(1,1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.