learners_plan <- drake_plan(
# Random Forest --------------------------------------------------------------
lrn_rf = target(
makeLearner(
"regr.ranger.pow"
)
),
# XGBOOST --------------------------------------------------------------------
lrn_xgboost = target(
makeLearner(
"regr.xgboost",
par.vals = list(
objective = "reg:squarederror",
eval_metric = "error",
grow_policy = "lossguide" # https://towardsdatascience.com/build-xgboost-lightgbm-models-on-large-datasets-what-are-the-possible-solutions-bf882da2c27d
)
)
),
# SVM ------------------------------------------------------------------------
lrn_svm = target(
makeLearner(
"regr.ksvm",
scaled = FALSE,
fit = FALSE
)
),
# LASSO ----------------------------------------------------------------------
# how to tune lambda for glmnet:
# https://stats.stackexchange.com/a/415248/101464
# We tune param 's' manually by supplying our own vector for 's'
lrn_lasso = target(
makeLearner("regr.glmnet",
id = "Lasso-MBO",
alpha = 1,
standardize = FALSE
)
),
lrn_lassocv = target(
makeLearner("regr.glmnet",
id = "Lasso-CV",
alpha = 1,
lambda = seq(0, 10, 1),
standardize = FALSE
)
),
# RIDGE ----------------------------------------------------------------------
# We tune param 's' manually by supplying our own vector for 's'
lrn_ridge = target(
makeLearner("regr.glmnet",
id = "Ridge-MBO",
alpha = 0,
standardize = FALSE
)
),
lrn_ridgecv = target(
makeLearner("regr.glmnet",
id = "Ridge-CV",
alpha = 0,
lambda = seq(0, 10, 1),
standardize = FALSE
)
),
# featureless
lrn_featureless = target(
makeLearner("regr.featureless",
id = "featureless"
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.