# see https://ropenscilabs.github.io/drake-manual/plans.html#large-plans
benchmark_plan <- drake_plan(
learners_penalized = list(
lrn_lasso,
lrn_ridge
),
learners_keep_models = list(
# tune_wrappers_mbo %>%
# keep(~ "SVM MBO MRMR" %in% .x$id)
tune_wrappers_mbo[[28]]
),
tune_wrappers_mbo_sub = tune_wrappers_mbo[20],
tune_wrappers_mbo1 = append(tune_wrappers_mbo, list(makeLearner("regr.featureless"))),
### 174 targets
# Learners:
# 1:6 - RF
# 7:12 - XGBOOST
# 13:18 - SVM
# 19 - RF MBO Borda: 19
# 20 - XGBOOST MBO Borda: 20
# 21 - SVM MBO Borda: 21
# 22 - RF MBO PCA: 22
# 23 - XGBOOST MBO PCA: 23
# 24 - SVM MBO PCA: 24
# 25 - RF MBO No Filter
# 26 - XGBOOST MBO No Filter
# 27 - SVM MBO No Filter
# 28 - Lasso MBO
# 29 - RIDGE MBO
# 30 - regr.featureless
# Tasks:
# 1 - hr
# 2 - vi
# 3 - nri
# 4 - hr_nri
# 5 - nri_vi
# 6 - hr_nri_vi
benchmark_no_models = target(
benchmark(
learners = tune_wrappers_mbo1[[1]],
tasks = task_reduced_cor,
models = FALSE,
keep.pred = TRUE,
resamplings = makeResampleDesc("CV", fixed = TRUE),
show.info = TRUE,
measures = list(
setAggregation(rmse, test.mean),
setAggregation(rsq, test.mean)
)
),
dynamic = cross(
tune_wrappers_mbo1,
task_reduced_cor[[1]]
)
),
tune_wrappers_mbo_inspect_tune = tune_wrappers_mbo[c(1, 13, 20)],
task_hr_nri_vi = task_reduced_cor[6],
benchmark_tune_results_hr_nri_vi = target(
benchmark(
learners = tune_wrappers_mbo_inspect_tune,
tasks = task_hr_nri_vi,
models = FALSE,
keep.pred = TRUE,
resamplings = makeResampleDesc("CV", fixed = TRUE),
show.info = TRUE,
measures = list(
setAggregation(rmse, test.mean),
setAggregation(rsq, test.mean),
setAggregation(expvar, test.mean)
),
keep.extract = TRUE
),
# Best performing learners on HR-NRI-VI dataset
# SVM: PCA
# RF: Car
# XG: Borda
dynamic = cross(tune_wrappers_mbo_inspect_tune, task_hr_nri_vi)
),
# used in response-normality.Rmd
benchmark_models = target(
benchmark(
learners = learners_keep_models[[1]],
tasks = task,
models = TRUE,
keep.pred = TRUE,
resamplings = makeResampleDesc("CV", fixed = TRUE),
show.info = TRUE,
measures = list(
setAggregation(rmse, test.mean),
setAggregation(rsq, test.mean)
)
),
dynamic = cross(learners_keep_models[[1]], task_reduced_cor)
),
benchmark_models_penalized_mbo_trim_cor = target(
benchmark(
learners = learners_penalized,
tasks = task,
models = TRUE,
keep.pred = TRUE,
resamplings = makeResampleDesc("CV", fixed = TRUE),
show.info = TRUE,
measures = list(
setAggregation(rmse, test.mean),
setAggregation(rsq, test.mean),
setAggregation(expvar, test.mean)
)
),
dynamic = cross(learners_penalized, task_reduced_cor)
),
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.