# Code to prepare the global summary spreadsheet goes here
library(magrittr)
library(dplyr)
if(!exists("combined_data")){ combined_data <- readRDS("support_files/combined_data.rds") } #nolint
if(!exists("import_history")){ import_history <- readRDS("support_files/import_history.rds") } #nolint
output_folder <- Sys.getenv("OUTPUT_FOLDER")
process_data <- function(combined_data, import_history, output_folder) {
summary_data <- daa.analytics::global_summary(combined_data)
result_data <- summary_data %>%
group_by(period, indicator) %>%
mutate(
total_pepfar_summation = sum(PEPFAR_Results_FacilitiesReportedByBoth, na.rm = TRUE),
weight = PEPFAR_Results_FacilitiesReportedByBoth / total_pepfar_summation,
ou_contribution_to_global = Concordance * weight
) %>%
ungroup() %>%
group_by(period, indicator) %>%
mutate(
summation_global_concordance = sum(ou_contribution_to_global, na.rm = TRUE),
Global_Concordance_Percent = round(summation_global_concordance * 100, 2)
) %>%
ungroup()
result_data <- result_data %>% select(-total_pepfar_summation)
summary_data <- result_data |>
dplyr::filter(!is.na(OU)) |>
dplyr::left_join(dplyr::select(import_history,
OU,
period,
indicator,
CourseOrFine = has_disag_mapping,
DataOrMapping = has_mapping_result_data),
by = c("OU", "period", "indicator")) |>
dplyr::mutate(DataOrMapping = ifelse((is.na(MOH_Results_Total) | MOH_Results_Total == "None") & CourseOrFine == "Coarse" & period < 2022, "Mapping Coarse",
ifelse((is.na(MOH_Results_Total) | MOH_Results_Total == "None") & CourseOrFine == "Fine" & period < 2022, "Mapping Fine",
ifelse((is.na(CourseOrFine) | CourseOrFine == "None" | CourseOrFine == "NA") & period < 2022, "No Mapping",
ifelse(!is.na(MOH_Results_Total) & !is.na(PEPFAR_Results_Total) & CourseOrFine == "Fine" & period < 2022, "Data Fine",
ifelse(!is.na(MOH_Results_Total) & CourseOrFine == "Fine" & period < 2022, "Data Fine",
ifelse(!is.na(MOH_Results_Total) & CourseOrFine == "Coarse" & period < 2022, "Data Coarse",
ifelse(!is.na(MOH_Results_Total) & !is.na(PEPFAR_Results_Total) & CourseOrFine == "Coarse" & period < 2022, "Data Coarse", DataOrMapping))))))))
summary_data <- dplyr::select(summary_data, -CourseOrFine)
write.csv(summary_data, paste0(output_folder, "global_summary.csv"))
}
process_data(combined_data, import_history, output_folder)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.