#' Show simplex results
#' Function to show simplex results. Sampled data, embedding dimensions, prediction
#' decays and nonlinearity
#' @param samp_input Output from run_simplex
#' @param nrun Iteration to sample
#' @export
show_results <- function(samp_input, nrun){
#---------------------------------------
#define multiplot funcion
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
#---------------------------------------
#Plot sampled time series
d1 <- samp_input$samples %>% melt(id.vars = c('iter', 'pars', 'time'))
d1$iter <- as.numeric(d1$iter)
d1 <- d1 %>% filter(iter == nrun)
p1 <- ggplot(d1) + geom_line(aes(x = time, y = value, colour = variable,
group = variable)) + ggtitle("Sampled data")
#Simplex embedding dimension
d2 <- samp_input$simplex_df
d2 <- d2 %>% filter(iter == nrun)
p2 <- ggplot(d2) + geom_line(aes(x = E, y = rho, colour = variable)) +
geom_hline(yintercept = 0, lty = 2) + ggtitle("Simplex embedding dimension")
#Prediction decay
d3 <- samp_input$pred_decay
d3 <- d3 %>% filter(iter == nrun)
p3 <- ggplot(d3) + geom_line(aes(x = tp, y = rho, colour = variable,
group = variable)) + geom_hline(yintercept = 0 , lty = 2) +
ggtitle("Prediction decay")
#Nonlinearity
d4 <- samp_input$nonlinear
d4 <- d4 %>% filter(iter == nrun)
p4 <- ggplot(d4) + geom_line(aes(x = theta, y = rho, colour = variable)) +
geom_hline(yintercept = 0 , lty = 2) +
ggtitle("Nonlinearity")
# browser()
multiplot(p1, p2, p3, p4)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.