#'@rdname metropolishastings
#'@title Metropolis Hastings algorithms
#'@description with multiple chains and adaptive proposal
#'@export
metropolishastings <- function(target, tuning_parameters){
niterations <- tuning_parameters$niterations
nchains <- tuning_parameters$nchains
cov_proposal <- tuning_parameters$cov_proposal
# store whole chains
chains <- rep(list(matrix(nrow = niterations, ncol = target$dimension)), nchains)
# current states of the chains
current_chains <- matrix(nrow = nchains, ncol = target$dimension)
# initialization of the chains
current_chains <- tuning_parameters$rinit(nchains)
for (ichain in 1:nchains){
chains[[ichain]][1,] <- current_chains[ichain,]
}
# log target density values associated with the current states of the chains
current_dtarget <- target$density(current_chains)
dtarget_history <- matrix(nrow = niterations, ncol = nchains)
dtarget_history[1,] <- current_dtarget
#
naccepts <- 0
# run the chains
for (iteration in 2:niterations){
if (iteration > 50 && tuning_parameters$adaptation > 0 && (iteration %% tuning_parameters$adaptation) == 0){
# adapt the proposal covariance matrix based on the last < 50,000 samples of all chains
mcmc_samples <- foreach(ichain = 1:nchains, .combine = rbind) %do% {
matrix(chains[[ichain]][max(iteration-tuning_parameters$adaptation, iteration - 50000):(iteration-1),], ncol = target$dimension)
}
cov_proposal <- cov(mcmc_samples) / target$dimension
}
# proposals
proposals <- current_chains + fast_rmvnorm(nchains, rep(0, target$dimension), cov_proposal)
# proposals' target density
proposal_dtarget <- target$density(proposals)
# log Metropolis Hastings ratio
acceptance_ratios <- (proposal_dtarget - current_dtarget)
# uniforms for the acceptance decisions
uniforms <- runif(n = nchains)
# acceptance decisions
accepts <- (log(uniforms) < acceptance_ratios)
naccepts <- naccepts + sum(accepts)
# make the appropriate replacements
current_chains[accepts,] <- proposals[accepts,]
if (is.null(dim(current_chains))) current_chains <- matrix(current_chains, ncol = target$dimension)
current_dtarget[accepts] <- proposal_dtarget[accepts]
# book keeping
for (ichain in 1:nchains){
chains[[ichain]][iteration,] <- current_chains[ichain,]
}
dtarget_history[iteration,] <- current_dtarget
}
cat("average acceptance:", naccepts / (niterations*nchains) * 100, "%\n")
return(list(chains = chains, current_dtarget = current_dtarget, dtarget_history = dtarget_history,
naccepts = naccepts, cov_proposal = cov_proposal))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.