# dempsterpolytope - Gibbs sampler for Dempster's inference in Categorical distributions
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#'@rdname sample_meeting_times
#'@title Sample meeting times associated with coupled lagged Gibbs chains
#'@description
#' Sample meeting times to monitor convergence
#' of the Gibbs sampler, as in the article
#' *Estimating Convergence of Markov chains with L-Lag Couplings*
#' by Niloy Biswas, Pierre E. Jacob, Paul Vanetti,
#' available at <https://arxiv.org/abs/1905.09971>.
#'
#' The coupled chains are generated using a mixture of coupled kernels;
#' with probability omega, a "common random numbers (CRN)" coupling is performed;
#' otherwise a (nearly) maximal coupling is used in a Gibbs sweep.
#'@param counts vector of counts; could include zeros.
#'@param lag lag between the chains; defaults to 1.
#'@param omega probability of a coupled "CRN" step as opposed to maximal coupling step; defaults to 0.9.
#'@param max_iterations number of iterations after which to stop, in case meeting hasn't occurred; defaults to 1e5.
#'@param removezero remove zeros from counts before running coupled Gibbs sampler; defaults to TRUE
#'@return An integer representing the meeting time; or +Inf if meeting has not occurred before 'max_iterations'.
#'The meeting times can be turned into upper bounds on the total variation (TV) distance
#'between the Markov chain at some iteration and the limiting distribution,
#'using the function \code{\link{tv_upper_bound}}.
#'@examples
#'\dontrun{
#'nrep <- 100
#'meeting_times <- sapply(1:nrep, function(irep) sample_meeting_times(counts = c(3,2,0,1)))
#'tmax <- floor(max(meeting_times)*1.2)
#'ubounds <- sapply(1:tmax, function(t) tv_upper_bound(meeting_times, 1, t))
#'plot(x = 1:tmax, y = ubounds, type = 'l', xlab = "iteration", ylab = "TV upper bounds")
#'}
#'@export
sample_meeting_times <- function(counts, lag = 1, omega = 0.9, max_iterations = 1e5, removezero = TRUE){
K <- length(counts) # number of categories
if (removezero){
counts <- counts[counts>0]
K <- length(counts) # number of categories
}
rinit <- function(){ x = rexp(K); return(x/sum(x))}
categories <- 1:K
same_u_in_categoryk <- rep(FALSE, K) # indicates whether all variables in a category are identical
same_u <- list() # indicates whether the auxiliary variables are identical across the chains
for (k in 1:K){
if (counts[k] > 0){
same_u[[k]] <- rep(FALSE, counts[k]) # indicator of each a's being identical in both chains
} else {
same_u[[k]] <- TRUE
}
}
######### setup Linear Program (LP)
Km1squared <- (K-1)*(K-1)
# number of constraints in the LP: K+1 constraints for the simplex
# and (K-1)*(K-1) constraints of the form theta_i / theta_j < eta_{j,i}
nconstraints <- K + 1 + Km1squared
# matrix encoding the constraints
mat_cst <- matrix(0, nrow = nconstraints, ncol = K)
mat_cst[1,] <- 1
for (i in 1:K) mat_cst[1+i,i] <- 1
# direction of constraints
dir_ <- c("=", rep(">=", K), rep("<=", Km1squared))
# right hand side of constraints
rhs_ <- c(1, rep(0, K), rep(0, Km1squared))
# create LP object
lpobject <- make.lp(nrow = nconstraints, ncol = K)
# set right hand side and direction
set.rhs(lpobject, rhs_)
set.constr.type(lpobject, dir_)
# now we have the basic LP set up and we will update it during the run of the Gibbs sampler
## initialization
theta_01 <- rinit() # initial theta_0 for both chains
theta_02 <- rinit()
# draw auxiliary variables in the partition defined by theta_0 within the simplex
init_tmp1 <- initialize_pts(counts, theta_01)
pts1 <- init_tmp1$pts
init_tmp2 <- initialize_pts(counts, theta_02)
pts2 <- init_tmp2$pts
# compute etas
etas1 <- do.call(rbind, init_tmp1$minratios)
etas2 <- do.call(rbind, init_tmp2$minratios)
##### advance first chain by 'lag' steps
iteration <- 0
for (l in 1:lag){
iteration <- iteration + 1
## do a Gibbs sweep, looping over the categories
for (k in categories){ if (counts[k] > 0){
# set Linear Program for this update and find associated theta_star
mat_cst_ <- mat_cst; icst <- 1
for (j in setdiff(1:K, k)){
for (i in setdiff(1:K, j)){
if (all(is.finite(etas1[j,]))){
row_ <- (K+1)+icst; mat_cst_[row_,i] <- 1; mat_cst_[row_,j] <- -etas1[j,i]
}
icst <- icst + 1
}}
for (ik in 1:K) set.column(lpobject, ik, mat_cst_[,ik])
vec_ <- rep(0, K); vec_[k] <- -1; set.objfn(lpobject, vec_)
solve(lpobject); theta_star1 <- get.variables(lpobject)
# using theta_star, re-draw auxiliary variables
pts_k <- dempsterpolytope:::runif_piktheta_cpp(counts[k], k, theta_star1)
pts1[[k]] <- pts_k$pts
etas1[k,] <- pts_k$minratios
}}
}
### perform coupled Gibbs steps until the two chains meet
meeting <- Inf
while (is.infinite(meeting) && iteration < max_iterations){
iteration <- iteration + 1
# loop over categories
for (k in categories){ if (counts[k] > 0){
## find the two "theta_star"
# find first theta_star
mat_cst_ <- mat_cst; icst <- 1
for (j in setdiff(1:K, k)){ for (i in setdiff(1:K, j)){
if (all(is.finite(etas1[j,]))){
row_ <- (K+1)+icst; mat_cst_[row_,i] <- 1; mat_cst_[row_,j] <- -etas1[j,i]
}
icst <- icst + 1
}}
for (ik in 1:K) set.column(lpobject, ik, mat_cst_[,ik])
vec_ <- rep(0, K); vec_[k] <- -1; set.objfn(lpobject, vec_)
solve(lpobject); theta_star1 <- get.variables(lpobject)
# find second theta_star
mat_cst_ <- mat_cst; icst <- 1
for (j in setdiff(1:K, k)){ for (i in setdiff(1:K, j)){
if (all(is.finite(etas2[j,]))){
row_ <- (K+1)+icst; mat_cst_[row_,i] <- 1; mat_cst_[row_,j] <- -etas2[j,i]
}
icst <- icst + 1
}}
for (ik in 1:K) set.column(lpobject, ik, mat_cst_[,ik])
vec_ <- rep(0, K); vec_[k] <- -1; set.objfn(lpobject, vec_)
solve(lpobject); theta_star2 <- get.variables(lpobject)
## now that we have theta_star1 and theta_star2
## with probability omega, do Gibbs step with common RNG,
## otherwise do Gibbs step with maximal coupling
u_ <- runif(1)
if (u_ < omega){
## common random numbers
coupled_results_ <- dempsterpolytope:::crng_runif_piktheta_cpp(counts[k], k, theta_star1, theta_star2)
pts1[[k]] <- coupled_results_$pts1
etas1[k,] <- coupled_results_$minratios1
pts2[[k]] <- coupled_results_$pts2
etas2[k,] <- coupled_results_$minratios2
} else {
## maximal coupling
pts1_ <- matrix(NA, nrow = counts[k], ncol = K)
pts2_ <- matrix(NA, nrow = counts[k], ncol = K)
coupled_results_ <- dempsterpolytope:::maxcoupling_runif_piktheta_cpp(counts[k], k, theta_star1, theta_star2)
pts1[[k]] <- coupled_results_$pts1
etas1[k,] <- coupled_results_$minratios1
pts2[[k]] <- coupled_results_$pts2
etas2[k,] <- coupled_results_$minratios2
same_u[[k]] <- coupled_results_$equal
## indicate whether all auxiliary variables coincide across two chains
same_u_in_categoryk <- all(same_u[[k]])
}
}}
## if all auxiliary variables, in all categories, coincide across two chains
if (all(same_u_in_categoryk)){
## then chains have met
meeting <- iteration
}
}
## remove Linear Program object
rm(lpobject)
## return meeting
return(meeting)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.