#' @title readAndrijevic2019
#' @description read in governance index data from Andrijevic et al. 2019
#' @return governance index data at iso-country level
#'
#' @param subtype data used from governance2019 repository
#'
#' @author Felicitas Beier
#'
#' @seealso [readSource()]
#' @examples
#' \dontrun{
#' a <- readSource("Andrijevic2019")
#' }
#'
#' @importFrom utils read.csv
#' @importFrom magclass getSets as.magpie collapseNames new.magpie getYears getNames clean_magpie
#' @importFrom madrat toolCountryFill
readAndrijevic2019 <- function(subtype) {
# read in data:
file <- paste(subtype, "csv", sep = ".")
data <- read.csv(file, header = TRUE, dec = ".", sep = ",")[, -1]
# remove NAs:
data <- data[!is.na(data$year), ]
if (subtype == "master_proj_obs") {
data <- data.frame(countrycode = data$countrycode,
scenario = data$scenario,
year = data$year,
governance = data$governance,
goveff = data$gov.eff,
corrcont = data$corr.cont,
readiness = data$readiness)
}
# format data for transformation to magpie object
data$year <- paste0("y", data$year)
# historical observed data
histData <- data[data$scenario == "Observed", ]
histData <- collapseNames(as.magpie(histData))
histData <- toolCountryFill(histData, fill = NA)
# projected scenario data
projData <- data[data$scenario != "Observed", ]
projData <- collapseNames(as.magpie(projData))
projData <- toolCountryFill(projData, fill = NA)
# merge historical and projected data into one object
histData <- histData[, intersect(getYears(histData), getYears(projData)), , invert = TRUE]
out <- new.magpie(cells_and_regions = magclass::getItems(histData, dim = 1),
years = c(getYears(histData), getYears(projData)),
names = getNames(projData),
fill = NA)
out[, getYears(histData), ] <- histData
out[, getYears(projData), ] <- projData
getSets(out)[1] <- "iso"
out <- clean_magpie(out)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.