Description Usage Arguments Details Value
Functions for preparing model specification, evaluating the likelihood for the DSQ filtering.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | model_translateParameters(par.vec, par.names = names(par.vec), par.restr,
N.factors)
model_makeDefaultParameterStructures(N.factors,
pq.equality = c("Q$jmp$lvec", paste0("Q$jmp$lprop.", 1:N.factors),
paste0("Q$", 1:N.factors, "$eta")))
model_fellerConditionCheck(params.P, params.Q, N.factors)
model_Likelihood_extraNoise(data.structure, model.spec,
for.estimation = FALSE, filterFoo = DSQ_sqrtFilter, N.points = 5,
penalized = FALSE, penalty = 1e+12)
model_wrapLikelihood_extraNoise(data.structure, model.spec,
for.estimation = FALSE, filterFoo = DSQ_sqrtFilter, N.points = 5,
penalized = FALSE, penalty)
model_Likelihood_portfolio_extraNoise(data.structure, model.spec,
for.estimation = FALSE,
filterFoo = divergenceModelR:::portfolio_sqrtFilter, N.points = 5,
penalized = FALSE, penalty = 1e+12, N.GL.points = 96)
model_wrapLikelihood_portfolio(data.structure, model.spec,
for.estimation = FALSE,
filterFoo = divergenceModelR:::portfolio_sqrtFilter, N.points = 5,
penalized = FALSE, penalty, N.GL.points = 96)
model_Likelihood_affineContract(data.structure, model.spec,
for.estimation = FALSE, filterFoo = DSQ_sqrtFilter, N.points = 5,
penalized = FALSE, penalty = 1e+12)
model_wrapLikelihood_affineContract(data.structure, model.spec,
for.estimation = FALSE,
filterFoo = divergenceModelR:::portfolio_sqrtFilter, N.points = 5,
penalized = FALSE, penalty)
|
par.vec |
vector with model parameter values |
par.names |
parameter names, character vector equal in length to par |
par.restr |
parameter equality restrictions, data.frame; par.vec and par.restr have to exhaust the model parameter set together. |
N.factors |
integer, number of SV factors |
data.structure |
|
model.spec |
|
for.estimation |
|
filterFoo |
|
N.points |
|
penalized |
|
noisePar |
vector of noise variance magnitudes, equal to number of observed pfolios |
noisePar |
vector of noise variance magnitudes, equal to number of observed pfolios |
noisePar |
vector of noise variance magnitudes, equal to number of observed pfolios |
Not much for now
model_Likelihood if for.estimation==TRUE: log-likelihood value (NOT negative of...), else: list with filtering results
model_translateParameters list with fields P and Q, input for all ODE calling functions.
model_makeDefaultParameterStructures returns data.frame par.restr and character vector par.names
model_fellerConditionCheck list with two logical vectors reporting whether the Feller conditions are satisfied
model_Likelihood_extraNoise list with fields P and Q, input for all ODE calling functions.
model_wrapLikelihood_extraNoise wraps the likelihood function with extra noise so that it only accepts a parameter vector argument – use this for optimizers that do not allow passing extra arguments to the optimised function.
model_Likelihood_portfolio_extraNoise list with fields P and Q, input for all ODE calling functions.
model_wrapLikelihood_portfolio wraps the likelihood function so that it only accepts a parameter vector argument – use this for optimizers that do not allow passing extra arguments to the optimised function.
model_Likelihood_affineContracts list with fields P and Q, input for all ODE calling functions.
model_wrapLikelihood_affineContract wraps the likelihood function so that it only accepts a parameter vector argument – use this for optimizers that do not allow passing extra arguments to the optimised function.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.