diVaMo: DiVaMo

Description Usage Details Value Note Author(s) References See Also Examples

Description

This library compares two specimens' classes, desease and healty, and it uses pathways to collect a specific genes' subset. Desease specimens are named case, healty ones are named control.

Usage

1

Details

No more details are needed.

Value

comp1

Description of 'comp1'

comp2

Description of 'comp2'

Note

No further notes needed.

Author(s)

Alessandro Ingrosso

References

~put references to the literature/web site here ~

See Also

~~objects to See Also as help, ~~~

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function () 
{
    pathCampioni = "/Users/aingrosso/Dropbox/Progetti/IASI-CNR/Sviluppo/Input_Matrice_Campioni.csv"
    pathPathways = "/Users/aingrosso/Dropbox/Progetti/IASI-CNR/Sviluppo/Input_Matrice_Pathways.csv"
    idClasse = "Classe"
    listaValoriClasse <- c("CASO", "CONTROLLO")
    paramSoglia = 1.1
    mCampioni = read.csv2(pathCampioni, row.names = 1, header = TRUE)
    tableControlloR001 <- paste(mCampioni$Pathology, mCampioni$Classe, 
        sep = "_")
    if (length(unique(tableControlloR001[duplicated(tableControlloR001)]))%%2 == 
        0) 
        print("controllo superato")
    else print("controllo non superato")
    mPathways = read.csv2(pathPathways, row.names = 1, header = TRUE)
    numPathology <- unique(mCampioni$Pathology)
    pathways_Geni <- matrix(NA, nrow = (nrow(mPathways) * length(numPathology)), 
        ncol = ncol(mPathways) + 1, byrow = TRUE, dimnames = list(paste(labels(mPathways)[[1]], 
            numPathology, sep = "_"), append(labels(mPathways)[[2]], 
            "Pathology")))
    pathways_Score <- matrix(NA, nrow = nrow(mPathways), ncol = length(numPathology), 
        byrow = TRUE, dimnames = list(labels(mPathways)[[1]], 
            numPathology))
    pathways_Score <- cbind(pathways_Score, Size = NA)
    for (i in 1:nrow(mPathways)) {
        pathwayGenes <- character()
        for (j in 1:ncol(mPathways)) {
            if (mPathways[i, j] == 1) 
                pathwayGenes <- append(pathwayGenes, c(labels(mPathways)[[2]][j]))
        }
        for (j in 1:length(numPathology)) {
            print(paste("Elaboro il Pathway", row.names(mPathways)[i], 
                "della patologia", numPathology[j], sep = " "))
            keywordCaso = paste(numPathology[j], listaValoriClasse[1], 
                sep = "_")
            keywordControllo = paste(numPathology[j], listaValoriClasse[2], 
                sep = "_")
            nCasi = table(tableControlloR001 == keywordCaso)["TRUE"]
            nControlli = table(tableControlloR001 == keywordControllo)["TRUE"]
            nAB = nCasi * nControlli
            matrice_Confronti <- array(NA, c(nAB, length(pathwayGenes)))
            rigaCorrenteConfronto = 1
            for (k in match(keywordCaso, tableControlloR001):(nCasi - 
                1 + match(keywordCaso, tableControlloR001))) {
                for (n in match(keywordControllo, tableControlloR001):(nControlli - 
                  1 + match(keywordControllo, tableControlloR001))) {
                  for (m in 1:length(pathwayGenes)) {
                    if (!is.null(mCampioni[k, pathwayGenes[m]])) {
                      if ((mCampioni[k, pathwayGenes[m]]/mCampioni[n, 
                        pathwayGenes[m]]) > paramSoglia) 
                        matrice_Confronti[rigaCorrenteConfronto, 
                          m] = 1
                      else if ((mCampioni[n, pathwayGenes[m]]/mCampioni[k, 
                        pathwayGenes[m]]) > paramSoglia) 
                        matrice_Confronti[rigaCorrenteConfronto, 
                          m] = -1
                      else matrice_Confronti[rigaCorrenteConfronto, 
                        m] = 0
                    }
                  }
                  rigaCorrenteConfronto = rigaCorrenteConfronto + 
                    1
                }
            }
            contaUno <- integer()
            contaMenoUno <- integer()
            valEquilibrio <- integer()
            valGood <- integer()
            valContaGoodUno <- integer()
            valContaGoodMenoUno <- integer()
            for (k in 1:length(pathwayGenes)) {
                if (is.na(table(matrice_Confronti[, k] == 1)["TRUE"])) 
                  contaUno <- append(contaUno, 0)
                else contaUno <- append(contaUno, table(matrice_Confronti[, 
                  k] == 1)["TRUE"])
                if (is.na(table(matrice_Confronti[, k] == -1)["TRUE"])) 
                  contaMenoUno <- append(contaMenoUno, 0)
                else {
                  contaMenoUno <- append(contaMenoUno, table(matrice_Confronti[, 
                    k] == -1)["TRUE"])
                }
                if (contaUno[k] == 0) 
                  valEquilibrio <- append(valEquilibrio, contaMenoUno[k])
                else if (contaMenoUno[k] == 0) 
                  valEquilibrio <- append(valEquilibrio, contaUno[k])
                else valEquilibrio <- append(valEquilibrio, 0)
                if ((contaUno[k] == 0) & (contaMenoUno[k] > 0)) 
                  valGood = append(valGood, -1)
                else if ((contaUno[k] > 0) & (contaMenoUno[k] == 
                  0)) 
                  valGood = append(valGood, 1)
                else valGood = append(valGood, 0)
            }
            matrice_Confronti_Good <- array(NA, c(nAB, length(pathwayGenes)))
            for (k in 1:nrow(matrice_Confronti)) {
                for (n in 1:ncol(matrice_Confronti)) {
                  if (!is.na(matrice_Confronti[k, n])) {
                    if ((matrice_Confronti[k, n] * valGood[n]) > 
                      0) 
                      matrice_Confronti_Good[k, n] = 1
                    else matrice_Confronti_Good[k, n] = 0
                  }
                }
                if (!is.na(table(matrice_Confronti_Good[k, ] == 
                  1)["TRUE"])) 
                  valContaGoodUno = append(valContaGoodUno, table(matrice_Confronti_Good[k, 
                    ] == 1)["TRUE"])
                else valContaGoodUno = append(valContaGoodUno, 
                  0)
                if (!is.na(table(matrice_Confronti_Good[k, ] == 
                  -1)["TRUE"])) 
                  valContaGoodMenoUno = append(valContaGoodMenoUno, 
                    table(matrice_Confronti_Good[k, ] == -1)["TRUE"])
                else valContaGoodMenoUno = append(valContaGoodMenoUno, 
                  0)
            }
            minGoodUno = min(valContaGoodUno)
            minGoodMenoUno = min(valContaGoodMenoUno)
            contaGoodZero = table(valContaGoodUno == 0)["TRUE"]
            contaGoodMenoZero = table(valContaGoodMenoUno == 
                0)["TRUE"]
            maxEquilibrio = max(valEquilibrio)
            alpha = max(minGoodUno, minGoodMenoUno)
            if (minGoodUno > minGoodMenoUno) 
                nalpha = contaGoodZero
            else if (minGoodMenoUno > minGoodUno) 
                nalpha = contaGoodMenoZero
            else nalpha = min(contaGoodZero, contaGoodMenoZero)
            for (k in 1:length(pathwayGenes)) {
                pathways_Geni[paste(labels(mPathways)[[1]][i], 
                  numPathology[j], sep = "_"), pathwayGenes[k]] = (max(abs(contaUno[k]), 
                  contaMenoUno[k]))/nAB
            }
            pathways_Geni[paste(labels(mPathways)[[1]][i], numPathology[j], 
                sep = "_"), "Pathology"] = numPathology[j]
            pathways_Score[i, j] = ((alpha * nAB) + (nAB - nalpha))/nAB
            pathways_Score[i, "Size"] = length(pathwayGenes)
        }
    }
    for (i in 1:length(numPathology)) {
        pathways_Geni <- rbind(pathways_Geni, Totale = colSums(pathways_Geni[pathways_Geni[, 
            "Pathology"] == i, ], na.rm = TRUE))
        pathways_Geni[nrow(pathways_Geni), "Pathology"] = numPathology[j]
    }
    pathways_Geni[order(pathways_Geni[, "Pathology"]), ]
    write.csv2(pathways_Geni, "/Users/aingrosso/Dropbox/Progetti/IASI-CNR/Sviluppo/Matrice_Pathways_Geni.csv")
    write.csv2(pathways_Score, "/Users/aingrosso/Dropbox/Progetti/IASI-CNR/Sviluppo/Matrice_Pathways_Score.csv")
    print("finito")
  }

pjpalla/divamo documentation built on May 25, 2019, 8:19 a.m.