# ----------
# Statistical Functions
# ----------
#' @title calc_JK
#' @param EST A numeric vector of parameter estimates
#' @param LOO_EST A numeric matrix of parameter estimates
#' where columns correspond to each parameter and
#' rows correspond to each leave one out estimate
#' @param alpha A numeric value for constructing
#' (1 - alpha) * 100\% confidence intervals
#' @return A list of numeric jackknife summary mean
#' and confidence intervals
#' @export
calc_JK = function(EST,LOO_EST,alpha = 0.05){
LOO_EST = as.matrix(LOO_EST)
if( length(EST) != ncol(LOO_EST) )
stop("Dimension mismatch")
# Calculate pseudovalues
nn = nrow(LOO_EST); nn
PSDO = apply(as.matrix(LOO_EST),1,function(xx){
EST + (nn - 1) * (EST - xx)
})
PSDO = as.matrix(PSDO)
range(PSDO)
# hist(PSDO,breaks = 30)
dim(PSDO)
# Calculate mean
JK_mean = apply(PSDO,2,mean); JK_mean
# Calculate covariance
JK_var = var(PSDO); JK_var
# Calculate CI
JK_CI = JK_mean + c(-1,1) *
qnorm(1 - alpha/2) * sqrt(diag(JK_var) / nn)
out = list(JK_mean = JK_mean,
JK_var = JK_var,JK_CI = JK_CI)
# out
return(out)
}
###
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.