Description Usage Arguments Value See Also Examples
Calculate posterior predictive check p-value for a JAGS analysis
1 2 3 | predictive_check(object, parm = "discrepancy",
model_id = default_model_id(object), derived_code = NULL,
level = "current", estimate = "current", ...)
|
object |
a jags_analysis object. |
parm |
a character vector specifying the discrepancy derived parameters (default = "discrepancy"). |
model_id |
a count or string specifying the jags model to select. |
derived_code |
a character scalar defining a block in the JAGS dialect of the BUGS language that defines the discrepancy(s). |
level |
a numeric scalar specifying the significance level or a character
scalar specifying which mode the level should be taken from. By default the
level is as currently specified by |
estimate |
a character scalar indicating whether the point estimate
should be the "mean" or the "median". By default the estimate is as
currently defined by |
... |
further arguments passed to or from other methods. |
a coef table of the posterior predictive check p-values(s)
jags_model
, jags_analysis
,predict.jags_analysis
and coef.jags_analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ## Not run:
model1 <- jags_model("model {
alpha ~ dnorm(0, 50^-2)
beta ~ dnorm(0, 10^-2)
sigma ~ dunif(0, 10)
for(i in 1:length(Volume)) {
eMu[i] <- alpha + beta * Girth[i]
Volume[i] ~ dnorm(eMu[i], sigma^-2)
}
}",
derived_code = "data {
for(i in 1:length(Volume)) {
prediction[i] <- alpha + beta * Girth[i]
simulated[i] ~ dnorm(prediction[i], sigma^-2)
D_observed[i] <- log(dnorm(Volume[i], prediction[i], sigma^-2))
D_simulated[i] <- log(dnorm(simulated[i], prediction[i], sigma^-2))
}
discrepancy <- sum(D_observed) - sum(D_simulated)
}",
select_data = c("Volume", "Girth*"))
data(trees)
analysis1 <- jags_analysis(model1, data = trees)
predictive_check(analysis1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.