plotLZM: Plot local z-score mean to assess unbiasedness

View source: R/plotLZV.R

plotLZMR Documentation

Plot local z-score mean to assess unbiasedness

Description

Plot local z-score mean to assess unbiasedness

Usage

plotLZM(
  X,
  Z,
  aux = NULL,
  logX = FALSE,
  nBin = NULL,
  equiPop = TRUE,
  popMin = 30,
  logBin = TRUE,
  intrv = NULL,
  plot = TRUE,
  slide = FALSE,
  xlab = "Conditioning variable",
  xlim = NULL,
  ylim = NULL,
  title = "",
  add = FALSE,
  col = 5,
  label = 0,
  gPars = ErrViewLib::setgPars()
)

Arguments

X

(vector) abscissae of the Z values

Z

(vector) set of z-score values to be tested

aux

(vector) auxilliary vector to resolve ties in X sorting

logX

(logical) log-transform X

nBin

(integer) number of intervals for local coverage stats

equiPop

(logical) generate intervals with equal bin counts (default: 'equiPop = TRUE')

popMin

(integer) minimal bin count in an interval

logBin

(logical) if 'equiPop = FALSE', one can choose between equal range intervals, or equal log-range intervals (default 'logBin = TRUE')

intrv

(object) intervals generated by 'genIntervals' (default: 'NULL')

plot

(logical) plot the results

slide

(logical) use sliding window for subsetting (X,Z)

xlab

(string) X axis label

xlim

(vector) min and max values of X axis

ylim

(vector) limits of the y axis

title

(string) a title to display above the plot

add

(logical) add to previous graph ?

col

(integer) color index of curve to add

label

(integer) index of letter for subplot tag

gPars

(list) graphical parameters

Value

Invisibly returns a list of LZM results. Mainly used for its plotting side effect.

Examples


  uE  = sqrt(rchisq(1000, df = 4))  # Re-scale uncertainty
  E   = rnorm(uE, mean=0, sd=uE)    # Generate errors
  plotLZM(uE, E/uE, ylim = c(-1,1))


ppernot/ErrViewLib documentation built on June 1, 2024, 4:33 a.m.